Conversation with Merlin [email protected] · Wed Nov 22 2023

Com base no seu conhecimento, explique de maneira com conclusiva em tópicos os seguintes aspectos da Difração de Raios X (DRX), a técnica para caracterização estrutural de materiais, a geração de um feixe de Raio X, requisitos para amotras( pós, monólitos, nanoestruturas)

A difração de raios X (DRX) é uma técnica poderosa para a caracterização estrutural de materiais. Aqui estão alguns aspectos importantes:

Difração de Raios X (DRX):

  • A DRX é uma técnica que utiliza a difração de raios X por um material para determinar sua estrutura cristalina.
  • Os raios X incidem sobre o material e interagem com os espaçamentos atômicos, resultando em padrões de difração característicos.
  • Ao analisar esses padrões, é possível obter informações sobre a estrutura cristalina, incluindo espaçamentos de planos cristalinos e orientação dos cristais.

Geração de um Feixe de Raio X:

  • Os raios X são gerados por tubos de raios X, onde elétrons acelerados colidem com um alvo de metal.
  • Essa colisão produz radiação de raios X com energia e comprimento de onda apropriados para a difração materiais cristalinos.

Requisitos para Amostras (Pós, Monólitos, Nanoestruturas):

  • Para análise por DRX, as amostras devem ter uma estrutura cristalina, o que geralmente significa que elas devem ser cristalinas ou policristalinas.
  • Amostras deós: devem ser bem dispers para evitar o efeito de aglomeração e garantir uma análise representativa.
  • Monólitos: devem ser bem preparados para garantir que a orientação cristalina seja representativa da amostra.
  • Nanoestruturas: devem ser analisadas levando em consideração o tamanho pequeno e possíveis efeitos de tensão interna.

Esses são aspectos cruciais da DRX e da geração de feixes de raios X, bem como os requisitos para diferentes tipos de amostras.

%PDF-1.7 % 1 0 obj <> endobj 2 0 obj <> endobj 3 0 obj <>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 4 0 R/Group<>/Tabs/S>> endobj 4 0 obj <> stream xJ1]dfh t(Tn8pJ DP`#XWR`)CJP)c~=I1b=)2sPRv C^\|us$j(-^(bC[P}&l}'Ib#)C2kcdd~?oaq8MxZVr:=(Y]MmPU}toqc'O:Jy o: [,~;8Le 8nq|/xOi- endstream endobj 5 0 obj <> endobj 6 0 obj <> endobj 7 0 obj <> endobj 8 0 obj <> endobj 9 0 obj <>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 10 0 R/Group<>/Tabs/S>> endobj 10 0 obj <> stream xKoFx$z]E}$Egb vTXGP9-c{RbsIQ/@g/YH!TZP- geiwtG8N'8e4L'?M'/;J]2_/ ~Pw2<'WM}b+mQO:esKqz:h hFs1- 1|~;R[#)#Iv;UJrQrc4D{_MU[FQCc(1Bac}mfIuMaXnHCvmyyA;T3LeZh85X]fOuQ@97ity{Xra~OsNrVxE$PW' '];%A nYW[VDM*eXjq~'BP-gM&RCvrtp) mJE&aMWZoEv Y/K\^N~gP N$&rGu(drwT]nqmg @(~ "CU-'JcaLm!IV~[g KTQ> 0B05.)3Rq=b3Lr]-=*^)2}ur*l0 4x~( d@ oxx#,ZKBu=2T1\#4N;gr4jKVHcbqF$Fnjf\x}!y P8 z AWG7H sTO,tq@),A:&UA 3cixoC/aPjv_q2rvjx#'"Y:sW4P.tg*vGpak6#Gk o=Y8=}c_r endstream endobj 11 0 obj <> endobj 12 0 obj <> endobj 13 0 obj <> endobj 14 0 obj [ 15 0 R] endobj 15 0 obj <> endobj 16 0 obj <> endobj 17 0 obj <> endobj 18 0 obj <> endobj 19 0 obj <> endobj 20 0 obj <> endobj 21 0 obj [ 22 0 R] endobj 22 0 obj <> endobj 23 0 obj <> endobj 24 0 obj <> endobj 25 0 obj <>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 26 0 R/Group<>/Tabs/S>> endobj 26 0 obj <> stream xn#EsY?$!"@re!aOU=NpDd*sI&5Wx$+)Jke6xj5}GW#U,= d7~}oTV'^xi*kBa/ )c LBC-|8_7L@%pZoNfbj> &iC`o5L(L`gpM0"Z[Y_60>v1ZhGia^QS4zGdDc 6y!@!d$sC %SS.$&w 'JA2`M]UJ{BK* feyE(&ZNQ(K-Pr-5TxgBFw6l acVY nO2;&1*V HdDN_Z rXuA6!+ KWx2bO}.ZSHmB!WE1](Jr6sLByd*S|L )sDAE%sAr,l~0 hG]~lkmJA_;d8Qk\>m?GG{w]KBc JeQ|x i)C!6ND3VRQ(V(kTj(0_QUtbr2 SeT?\J+rU7,Gel6bunJ-ri2*gMZ%RXEQKU9ur6mn+Xu1-*Oyv fT/bl=r  OzM0`'&ul3i~ aWvrx'OAPwFIHGx%Ol:*LgWut" bl/L8H6&=kL][X$H_NcTk-l}P:d(vUn lXJ2h;yD@Tz|YzABZR9^6b5=h0:s+Tum G*aj#RJ"z7rZ4+p78}vBWj@ w>sJLm-L|@W|"`i<v%&!39. )_R:gk<;ye{o,*^ #I [B1x)H3.ieOyXBd2NYzV|t$l;%l>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 28 0 R/Group<>/Tabs/S>> endobj 28 0 obj <> stream x[7 zD:C$m(bHaw5x=Yooo#9 G~;Gt"!D9hn:ymWzN$[}}YX)9xttIoH009}e@Xa&*N1m5(w_~V_53HOL=gRk^P] 5N' 5Sd/WUEG0Hmf[v]Et|(qWaQn&.L"o+D)/c+BY^G')&C2 L ]5w>T:dPb_;n T mA. 5@T8EwZ}MCxU2d;f]{LVzHn*S{ ) +1 @M=Cz|8[QMRNI& Ve1O2 B}F mE,{{ukoSMl_f[4gZ E'-y!W/ y%CowIva*-ufhJ.5UU-aQR:m;Zn]SC!q{#PRT,4v!mUg`m)!('@iM~^IE"1&.Cm"pT0HWNfv\ IHinO!M<|}O*IK ?&p(N <b3j:H4p}UUu:+6<<I 1%q  h> endobj 30 0 obj <> endobj 31 0 obj <> endobj 32 0 obj <> endobj 33 0 obj <> endobj 34 0 obj [ 35 0 R] endobj 35 0 obj <> endobj 36 0 obj <> endobj 37 0 obj <> endobj 38 0 obj <>/Font<>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 39 0 R/Group<>/Tabs/S>> endobj 39 0 obj <> stream xOK0|wL6;?M{ZPv4xI&7^ "bk)"ZBi/)6(xSB}XIq/E4YmxU'OaN`0Y |Q9.c(3EmilGMc _QJvA]D26>>>/BBox[ 0 0 740.99 438.74] /Matrix[ 0.097167 0 0 0.16411 0 0] /Filter/FlateDecode/Length 59>> stream x+*@02M  B530Z($r{&+@4 + endstream endobj 41 0 obj <> stream JFIF``ZExifMM*JQQQC   !(!0*21/*.-4;[email protected]?]c\RbKSTQC''Q6.6QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQI" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

labcat.unb.br

%PDF-1.2 % 1 0 obj << /CropBox [0 0 595 842] /Rotate 0 /Parent 2 0 R /MediaBox [0 0 595 842] /Resources 3 0 R /Contents 4 0 R /Type /Page >> endobj 3 0 obj << /ExtGState << /GS1 5 0 R >> /ColorSpace << /Cs9 6 0 R /Cs5 7 0 R >> /XObject << /Im2 8 0 R >> /Font << /F2 9 0 R /TT2 10 0 R /TT6 11 0 R >> /ProcSet [/PDF /Text /ImageC /ImageI] >> endobj 4 0 obj << /Filter /FlateDecode /Length 2724 >> stream sz-:P@+FeS0r;>wX$uF|R-aOVU-IQ"6!E}9dd|Pt'(j pPO}dN:w /?A(xpj^ l t\pfRFD ;A[|;>O;Xe8&[f= OlaP/3h16 |-!IY8]Qa@'R!ep nFP qCovt~^HniL{MO 4#g Z4*,SdWf9K:,w2{SWv*l"p3ium.IO3fPw baeg1PS*STGs:m?q~fCw1Q}lqJCZ(;ZqM>Dbw%}\g-n]tBe5cX/;^y$%KF<:WQs{t Fd/ CbjH t[8wtC3T[xtW?C8;A!I@!HXvV!j>'1 YX`R FM/qt-E"qFTm zN|Pv2mZOp &BIXSo%N9 Jw$HCQdV0  M"D;17 H&$~v5,m0}8CR9 d=1C5:l>F (L'bq nx'?!%QX 9)E$ZCl7 _3MWDwzqd[:bx|MkCmK1p&ToOh5I4n? L.y@a eB>> 5nn@ 92hFUJSanT"@ha.l%s/=~<Q@Q 68d5"O7geCm;conZRMkP\uC$jLTx,@&w=4Mg Y}+&: dNVQ( wd6l lO8(Cq|z.zK}7N|tqp;i7ka`tTReP:NSwH+]MDj0 oWQbq~tHyH/RN zy=S4wjip#5F VIQgwK^N&5(= ~F%\I\Bea` eplG52\s j0YNsz43,|lL32pvrKH<3EOdu*W^Ntii|/ "4ZcZ<rIGs{OM^Dv~@\&mKq'`!=h(LM03\ D~ `Lh=)rS~e_ h8Q(wr Ijws)UJB42K1XQfMS>;zuihY}w0/ endstream endobj 8 0 obj << /ColorSpace 6 0 R /Subtype /Image /Filter /FlateDecode /Length 350263 /Width 1565 /Type /XObject /Height 984 /BitsPerComponent 8 >> stream AC wq?{A//MhMtghYcE(CRX5ffY t&jA=c[~<z #X RO(^'X"pFeq(CVm?pfq:GX&`][ EIK.1R #pq\"'|$j9qZR)BMFN;V]g!Ig.(N~8>/dd%?VIM>BL Rpbtb@HyS!e=Kv;0h|NH) 3D}:,uxMkCrWGHoE_Q R=U b*WUZ9==7r$bT0@E !it6-HAEG` @#2AY -h`(~^s`<PeADYzbIfOa|RI:;!75[^qOHx,2w:d_Ss~vl }?rJZ":~g}c9Y{#,xEMIppzGeN:t{m`)O|AC]E7{ e|VlYklZ"|J~kF>LwBF>s_z8"j:[g9@{17B ?n_94&J#,7:ybh\eDM=.rd/Q:YA$'-}nZ'Ac tQUfgx_AdORvUjf]Q2G14Tl7qo3hz+8JWt8Gi(<Fzm7* n|{S{A.>`u`8o^.@h 0B6J7ZFf)H -_ r~MkZDL^\,Rk43rW{yHGXJ/i`*] Q<gJD|@mIM-q}68QJD-VSotaiTLde0/QACWZv S"-A` =u2) ->Q&"  0V x~~B:<I-s TqN.OJ$F^ SeY^ l_IbLKYfBpq @%1lq450u.:lI%P }1k9Jl7NxOvUeZlt79 "2 XJc tKj_~_)\q}|l-)wv^$5{8(5;[ER'mzb!5)s*>'# =vDFq% nG$BK=jUv)CQZ4H} >)(_5!ODyEes iNnwV#@Cr%lQj+|"nR =ATv7KWn&A4[XE.9.8u` eV_FdXS4 D{8j, d&&Q)9_'3l/b72c"?1N >.2M!3G^73/[4l&j \c`Cb:4DA^j}xpSZ;O /gHy-xli5#G Dja`~6h^Uhl(VvZ&Yk s~jGTSnr;s/F`NxU-},0iqTg:P+yN?ne@ ^SC[<{dCk8b )itMEfI[ j3A*`[0#Vg(&28n&~ O gP!p|Gs{A:p&(;e2461L9Hu ?7X z+[-J%vDgxjv)OR;`078U*BY] j { Yqx[4_343gs0& LB=mLm5'Kn n e^`Gudz?:w RpHkdi-]x?hCy4\|a5kQmk@\prci\8k_GnP<]Aly5G(U .D1 Po_`VF#Wx!`~,CI@j mZ@Jt},N&mpe>-2[:&rt0q=SD,{U<4/ =q> +<E0ccodpU%VPu2.&_iqTg,wRF`e6\>pU*xcD{N {n2Uuug'ymprtvUqU&{Y4~aw-R-$zL.ZCXFks+RG/DY>dIT.|`Gs[ mR\!Lrg\* c%P <)Rw~z9 *|vqA~9 UP\Hw_m3p%rb8?nCLj7zRLH}h;@(|Y+F6MslYw$vie!frr{9O16O+1B" n_VtyC$fX,Z k_P~\~,Uv=xvU|^q`r=[Ub|$BG3*RSnnoNIL&x"#D;e~9u;C w8[tRUMrU~d]l2x ?A7lyl$TS/: HeR7J^U.a< "=bLhK<WP{]tw1aK H>J =u};Bs y}Jzsbq^uX%>a"!l;HoW=s:X.}fKy+?Jz Z>o0G8aCfP%).&O[[%i.J6+` +sB-C(Jt6_uaW{gx3!daj1O^'WA:jVn_fQ !Gu].c4c:/cl#y{k~svQwt0> E bu9O?9fI@{`| Kl.1 >L6Pc?Xsj^<`4S7J1+R &@;]}gl>%%f<[MF$s?/SGLr k:vI} S H;e^MHJr?"_#TwKyk`pPT_xiL Z 8SV{F:U^no!.zm5b0o AT^@.5t;pcZg''SOAK2t~XHX-05o#4Y*B32DlJB'OO|T|UJg*JFK9(M M5mm]T\dLFqL T>(`3#[eLz`0s~S ! CHc7 iNMl3X-xxcaH}-iz0Yn(`6" Wvk6.D@I W'6Afjww!*#Y'7*-SAB`~mR$We GE8RAY\i0'V5h" 7z$g^K"%Qg 3Sdjrh1y*(zN.?DB?(  qS,*#Tdj-DC|z)0'*xA.oJ1 l9l4G?#0Fq;f^ U{[,W>}ks8?yF9kNQ G6^)m(cL^/; _`!cO*F,cx {p_GwYa(o+N/9OK$pF0*A8y2nxPUK/dGh/n d@P:,hjCCo"K}fg4f.mzrO'%^-(U m$R*k 9F:@\YBUm+E wtZ E

teses.usp.br

%PDF-1.7 % 99 0 obj <>stream g;6>$j[ 7\Rx Hv8L-pqDgvr-=FB3ST gfL8T?#6-{@zvVb/3<aE%fGPLhV ww99H$U%@5ov2Nczd.iw Lhc&)kYK}@u"Lw\E *E*A_^ 0a9`X]_G/FnJ]czAY~q+>!><c&.gqr:ytiyd6iy=JDi}YILI=: ]JK6 oiAu&B W "TQxR3\ <&\;']H ;''(h`%/K6iia18aO,[Ng"hSm#PtBnkDi$1"OBo&7Y NyUM8_ zpoI88FRoCvpY=!=/ w)+,mCyL^rnlfVrQG~)h[E5z>z 8qp5GnIC _=1G/MpB .^@e'sp;a43|vyER^os4/hZaJ5e}gB-YiR$r*[Wo~jo ?.HOqhp 3cT"8gPUAN D.fusH7h{G1$tU 4-X^MS*p.i|#-[ ksA>stream cV=B; /ljg23TVxndK]uve>s34W}B!9@)6vOQ&mHP+PSzTFf ~uEoYwd8W;YSNyh1nIY5$MGSS endstream endobj 101 0 obj <>stream 5*5F^=xM2O[Sgu8+u0 tD95(W)Myov.k&# !V  #~M=m<ZdF0JbA'Jl,Yd6*~I%qb'~LJt+ O^ D4'W^vGV=my8FCVqGF.bgTMy:$|!bkL]gi3%]0NmaOgp^yo4L,-H.+Hq)BqJ%6? N]W+73kzOSoILi_+0 2+co Nx'er4XH,l(_Gkgrsg|-3i>=<='jC{(}Y9g%F 'S`Z+pw+("f*25E %t8U DG]6$^`uT}HBG `pAfH6][4xfh%& n~BH9H1Bm}l-`a CC$XwHJxEhY/I1j[,^(V*I).I" E2]^}VC8<;-ZP_-QqL(]|za/BOk%_~L1 lF 2j_D\&|YCtwN:()Pg_\*8\51|45B!mYG K7?S.<_8Mw-4hF b}q/{?  K3F:<=GBm)>8sCrdDpY~niH^STJ@2Ik1N%~cVo<T6NG{"tY"aa }%0 4H^rQE |R:pOC1X6! 5;Yz\KEV{ee,f&~ 6s:+f kk=wa#?~_%|w P^+ 4IQ?#.9jvn2"ll)M Qk?K/?"99J ^8}(=pgSt5R3}uR|C j;[:b_"*a /e?;amUlR{p'f[r[ckV{4Q{@Rb1$u^=M?G .232T!pE[?ObPQ@|L@Igq^J=D7~$pP4aB/nuR5e_9Yb_N{'e/HD:p%IB+Yv,oWt5 _`#z,@jHsfY' ;~9\aw =f]0TZovAC`C7YM,;!hn+>6b% j2[z3V4Nk`-} u&k2q_} YxDT=2xf;-<yss {g1C.{'dS|{u^whTq{WmqW_y1R_az%8p02[7c/[,TtR~i\AYr|Z<#xku~~ HWi%1\rI!x{ 0PnhL}>Im@ h 0Wr's{&mAGGeycu3]&2=$e7/Ld&Jxxa*C86u9Hw8l*`p"2U% F9%mW4 )58?p ZQAr endstream endobj 102 0 obj <>stream \j },=!QKK 11Uwm,m[\I0<$ks53@=Xs:,e&%#wnk:'qHSBlr/61XD5XCv`s"#{?ngQ :iMoa@ c`% ! *s1-' endstream endobj 103 0 obj <>stream =_HvOP08j$"YT/@+]oi.$.Flaf$'V,1+@|@'*sz"?C.uC[<6 kdXMO2e( 4y}'[ &J[_j0}!o($62S^V$#X.q`($4lVM*N]KLq(ZS+5Juz <)RN!GgnET@T; }*n8aXP%t5DnvK]?24m^~4bx N65dy"]![w C0m:Z/Z3p* BC8OuYp+F>stream .i<^) sZK$? ,fsB_`:1fm{Cb{ ]^GX~oiW;`w%nqc$bqd|!+ w/|5oyeXi'4vo>}+jMS/1~| >=3"SkTWkB$"*(Cp \ne<>& ^4bPj {*=[77q3=iiqPBtFvtnLU(KKU)eVe; OzT`Fjh(i[W2 RC)Po LVX`x(!w0L+ =s}oobx0x 7J'=U=QA.*}: `WIJa1*HrBDB >FrRPABB]gq)V$x(o&hc &B6~Nbvxhv_~ZRh RYtj`^C.n=G.eF~:A2 jQXga>zje|#M&w"'c3T X*VyR>seG@((t<./!bn^75I7yC#b8[!(RaO8tpIOQ8#-<\6. @ \c2'f%nP f*WpfiO>8T c|:ChARkL~A>k#_tN z};"e-KcW"2cMZuP TPBp\u8B 04:G_WO+uXF_#*Zk$D 'iC*mJNK$6uXH:1!S,WK-',osJCPC_xlsV&BQu ]pBmJEVs(ow1U-+2HPqEiBUAeexm7V{AJJV\7#&1= mx|!nG"Q^c?'*{\6 (, endstream endobj 3 0 obj <>stream :B n:Jg?5&svF:=`pn?Y$^j7<{H W|!(|}>"Fz eF7QyOh}Rs&<*<) +@L<[oOR0@Lo=1 rVrZsu 9BZG.u iUM8k\{=zn2KLz3ho]uRRL+<{%,!I]mG5-VOnC9s fE p[x3[ tU2jsiO6g/}|}-}xg}1f+zL3 'eI@Tg2-A##y9o^d-'i:|4#C;mB:_U5SB1{ _J'1>Ma=E6 e+<_<}u @(^{K F)E*>mx$F)*s$r,lf7Xx? sqOj";waB'i"3WR.Y)#`U#MF!f f7 RT! [,mDX'!(o0WJ^@v/> 24-+DkZBpc? rMWaEpo_/'1uS*|(`,P !pz2;,E4>N8=+cme^w%/EO3W?ADZ"G3H)H _ ~yH FrhNJP Iay\nSR:_':An#V(CCZa(A^%f(`Y&-bMoy2p[% n0w:Wqk%p( ucRT}_!{KCfv] {o`l;MK=f6 pAJP~~mzc#i Raq;f^P8Tj@OhX4o5+mQ b. VTK<@c|vr[M oyp LI"a2`n8 W8R>K0S46uFebpLDJMkZN7?Yn /`~&qBPDnM6|4Q9g=epP!d7hWSxWnJ@gGf6$;AH-nW }Xpv)_q(4nIle3v}pTaS>lACn!tz^ZKm2ITA +w,d+W"/Z{mM(2=[qQ@8_q&8 3:KCRK6]\D'$T@*F%)T? SR;P#5\;af;II9t@[IBjyRu8{Q,]$Ty0@W~)% &/5(8 FP)ha=t;T66,5FX gmARUF2uh} D0+x4eB3T<)([6L q=~l<%pV+T:p3 vBex@";9j+fCd9q/6;/bM\xSXL+_A;o2&^ft_9 m^YQs10% E6)Pf?I(3yh@m::kw*(/lB89b(_Fzj[j>:0&*1g_;cv ,>mO),l3o,3&5yDNG\VF`*S(EwUv

lume.ufrgs.br

Explique o método de monólitos para difração de raios x, Explique Resumidamente em tópicos e explique porque o usar monólitos, erros que podem ocorrer, e erros de preparação, a importancia de usar monólitos

O método de monólitos para difração de raios X pode ser resumido da seguinte forma:

  • Monólitos são estruturas cerâmicas porosas, geralmente em forma de favo de mel ou similar, que podem ser usadas como suportes para catalisadores ou como amostras para técnicas de caracterização, como a difração raios X.
  • Os monólitos oferecem uma grande área superficial e permitem o fluxo uniforme de gás ou líquido através de sua estrutura porosa, o que pode ser vantajoso em muitas aplicações.

A importância de usar monólitos na difração de raios X inclui:

  • Possibilidade de realizar análises in situ, ou seja, enquanto a reação está ocorrendo nas condições de operação.
  • Permitem a caracterização de materiais em situações que simulam condições reais de operação, o que é crucial para compreender o comportamento dos materiais em aplicações práticas.
  • Oferecem uma plataforma estável para a caracterização de catalisadores, permitindo a análise das mudanças estruturais e cristalinas durante a reação.

Erros que podem ocorrer ao usar monólitos na difração de raios X:

  • Sobreposição de picos de difração, o que pode dificultar a identificação e a interpretação dos padrões de difração.
  • Desalinhamento da amostra, resultando em informações imprecisas sobre a estrutura cristalina.
  • Contaminação da superfície dos monólitos, o que pode afetar as leituras da difração.

Erros de preparação podem incluir:

  • Má preparação da superfície da amostra, levando à perda de informação sobre picos de difração.
  • Má escolha do material do monólito, o que pode impactar a interpretação dos padrões de difração.
  • Má manipulação durante a preparação, resultando em danos à estrutura porosa dos monólitos.

Em resumo, os monólitos são importantes na difração de raios X devido à sua capacidade de simular condições reais de operação, sua estabilidade como suporte para amostras e catalisadores, e sua capacidade de permitir análises in situ. No entanto, erros de preparação e possíveis erros de difração devem ser cuidadosamente considerados ao utilizar monólitos nesta técnica.

Source publication Juan Ramn Gonzlez-Velasco Miguel Angel Gutierrez Ortiz Raquel Ferret[...] J. A. BotasThe synthesis of cordierite monolithic honeycombs by solid state reaction at high temperature of alumina, kaolin, talc and silica has been studied. The synthesized honeycombs have been characterized by DTA and XRD. The crystal composition of the samples have been observed to be very dependent on temperature and time of reaction. Thermal treatment o...Context 1... is clearly influenced by tempera- ture, but also by the duration of the thermal treatment [24]. Thus, some cordierite monolithic honeycombs have been prepared at the temperature of 1400 C- total crystallization according to the previous results- for times from 1 to 240 minutes. The X-ray diffraction patterns for these samples are shown in Fig. 3. With the very short time of 1 minute, the spinel and -alumina lines are observed. These lines decrease with time of exposure (see the diffractogram for times between 10 and 45 min), and after 120 minutes only traces can be observed. However, these conditions (high tempera- ture and long time) deteriorate the honeycomb structure ...Context 2... longer times, as 240 minutes, the hexagonal line (211) at 2 = 29.4 is divided into the romboedric lines (241) and (311) (not seen with the resolution of Fig. 3), and it appears the new line (020) together with the (110) at 2 = 10.4 , as it can be seen in Fig. 3 This pat- tern evidences the transition of indialite, the hexagonal polimorph, into -cordierite with ortorombic symme- try. This transformation is induced by reordering of Al and Si atoms in the lattice tetraedres, as several ...Context 3... longer times, as 240 minutes, the hexagonal line (211) at 2 = 29.4 is divided into the romboedric lines (241) and (311) (not seen with the resolution of Fig. 3), and it appears the new line (020) together with the (110) at 2 = 10.4 , as it can be seen in Fig. 3 This pat- tern evidences the transition of indialite, the hexagonal polimorph, into -cordierite with ortorombic symme- try. This transformation is induced by reordering of Al and Si atoms in the lattice tetraedres, as several distri- butions are possible between both symmetries ... Flvia C. C. Moura Maria Helena Araujo Jos D Ardisson[...] Rochel M. LagoIn this work, the reaction of the perovskite LaMnO3.15 with Fe has been promoted by thermal treatment of the mixture Fe/LaMnO3.15 at 200, 400 and 600 C. Mssbauer spectroscopy, X-ray diffraction (XRD), temperature programmed reduction (TPR) and temperature programmed desorption (O2-TPD) analyses suggested that at 400 and 600 C oxygen from perov... K. Aribi Madani Ghelamallah Abderrahim Bellifa[...] Abderrahim Choukchou-BrahamLanthana-doped zirconium oxide may strongly influence the solid state reaction. A series of samples denoted ZrxLa1x (where x = atomic percentage of the element) are prepared by hydrolysis in the neutral medium from ZrO2 and La2O3. These samples are calcined under air at 450 C, 900 C, and 1200 C, then characterized by specific surface area (BET)... E. C. Passamani J R B Tagarro C. Larica A. A. R. FernandesIn the present paper, a high energy milling process has been used to alloy Fe and B in the proportion 2:1. X-ray diffraction and Mssbauer spectroscopy were used to follow the solid state reaction among the alloy components and phase formation during thermal treatments of the final milled alloy, at distinct temperatures and environments. X-ray, DSC... Roxana-Elena Stnculescu Nadejda Horchidan Florin-Mihai TufescuThe effects of post-sintering re-oxidation treatment on dielectric relaxation, conductive and non-linear properties of dense Ba0.70Sr0.30TiO3 ceramics and its porous homologs were discussed. The ceramics were prepared by solid state reaction and sintered at 1450 C/2 h. The porosity degree was induced by adding 35 vol% graphite as sacrificial pore... M. A. Aksan M. A. Madre Shahed Rasekh[...] M.E. YakinciBi-2212 samples prepared by a solid-state reaction

researchgate.net

Source publication Elmira Soghrati Mohammad Kazemeini Alimorad Rashidi Kh. Jafari JozaniAn acid treatment of the cordierite monolith followed by coating of the CNT onto it by means of catalytic decomposition of methane was performed. The resulting material utilized as the support for the CoMo catalyst. The characterization outcomes showed that the CNTs were distributed uniformly on the surface of the monolith leading to a high BET sur...Context 1... Co and Mo) and causing enhancement of the metal deposition on the CNT as well as; (ii) lowering amounts of the amorphous carbon and other impurities introduced through the CVD preparation process. These latter impurities possessed a very small surface area and blocked the pores. The XRD patterns of the samples also supported these inferences. Fig. 3 represents the XRD patterns of monolithic supports and also prepared catalyst samples after calcinations. The XRD pattern of the bare cordierite is shown in Fig. 3(a). The cordierite mostly contained Al 2 O 3 , SiO 2 , MgO; therefore, Al, and Mg species would be leached when this material was treated under an acidic condition. From the ...Context 2... through the CVD preparation process. These latter impurities possessed a very small surface area and blocked the pores. The XRD patterns of the samples also supported these inferences. Fig. 3 represents the XRD patterns of monolithic supports and also prepared catalyst samples after calcinations. The XRD pattern of the bare cordierite is shown in Fig. 3(a). The cordierite mostly contained Al 2 O 3 , SiO 2 , MgO; therefore, Al, and Mg species would be leached when this material was treated under an acidic condition. From the XRD pattern of the A monolith (Fig. 3(b)), one may conclude that appropriate nitric acid treatment of cordierite monoliths led to destruction of the silicate ...Context 3... patterns of monolithic supports and also prepared catalyst samples after calcinations. The XRD pattern of the bare cordierite is shown in Fig. 3(a). The cordierite mostly contained Al 2 O 3 , SiO 2 , MgO; therefore, Al, and Mg species would be leached when this material was treated under an acidic condition. From the XRD pattern of the A monolith (Fig. 3(b)), one may conclude that appropriate nitric acid treatment of cordierite monoliths led to destruction of the silicate structure, removal of the Mg and Al ions as well as generation of free silica on the surface of the cordierite. All of these might have collectively been responsible for the creation of the high surface area of solids ...Context 4... cordierite monoliths led to destruction of the silicate structure, removal of the Mg and Al ions as well as generation of free silica on the surface of the cordierite. All of these might have collectively been responsible for the creation of the high surface area of solids [44] [52]. XRD patterns of the CNT coated monoliths are also presented in Fig. 3(c) and (d). As shown in this figure, the CNT support had a peak at about 2u of 26.058, corresponding to the (0 0 2) graphitic basal plane, and a peak at about 2u of 43.08 ascribed to the diffraction of (1 0 0) plane [36]. In addition, oxidation of the CNTs in FACNT monolith removed the active metals (for the CNT growth), amorphous carbon and ...Context 5... plane, and a peak at about 2u of 43.08 ascribed to the diffraction of (1 0 0) plane [36]. In addition, oxidation of the CNTs in FACNT monolith removed the active metals (for the CNT growth), amorphous carbon and other impurities. Therefore, no peaks related to the cobalt or molybdenum could be detected through the XRD pattern of FACNT monolith (Fig. ...Context 6... Co precursor with the edges of the Mo phase on the FACNT material although this was not independently verified. It is noteworthy that, the Co/Mo atomic ratio imposed pronounced effect on the catalytic activity obtained for the HDS process [36,56,57]. The XRD patterns of the A and FACNT supported catalysts after calcinations are demonstrated

researchgate.net

AbstractA fundamental study was conducted on the effectiveness of a silicon-on-insulator (SOI) pixel detector for industrial applications. In this study, we developed a measurement system for X-ray tri-axial stress analysis by using an INTPIX4, an integrated SOI pixel detector developed by Arai et al. This system measured the diffraction ring diffracted backward from the polycrystalline sample by using a CrK characteristic X-ray, and performed a tri-axial residual stress analysis by applying the generalised cos method. To verify this measurement system, we measured the residual stress of a rail used in service and examined the state of rolling contact fatigue due to contact with wheels. In this measurement, diffraction rings generated from 211 diffraction lines of the ferrite phase in the rail steel were measured. The results of this system were compared with those obtained from a commercial device using an image plate (IP). As a result, this measurement system was found to be able to effectively measure the tri-axial residual stress component 30 times faster than the commercial device, and proved to be promising for rail inspection.IntroductionWhen machines and structures are manufactured and used, residual stress is generated that affects their fatigue strength and causes brittle fractures. In the automotive and aircraft industries, the process of imparting compressive residual stress has been adopted to improve the strength of important parts. The most effective measurement technique for evaluating such residual stress is X-ray stress measurement[1]. We have been studying (residual) stress evaluation methods by analysing diffraction rings using X-rays or neutrons, mainly using an image plate (IP)[2], [3], [4], [5], [6]. We have also been developing a new X-ray stress measurement system that uses INTPIX4, silicon-on-insulator (SOI) pixel detector[7]. An SOI pixel detector is a semiconductor X-ray detector developed by Arai etal. who have developed several types of SOI pixel detectors since 2005[7], [8], [9], [10], [11], [12], [13], [14]. We have already clarified the basic performance of SOI pixel detectors and reported that they are effective for plane stress analysis and mapping measurements of welding residual stress[15], [16], [17].Since the X-ray stress measurement method utilises the diffraction phenomenon, the tri-axial stress state affects mainly the measurement of industrially important steel. This is because the steel contains multiple fine internal structures that have different elastic constants and crystal structures, such as ferrite, cementite, and retained austenite. In this case, conventional plane stress analysis cannot correctly measure stress[1], [18]. However, tri-axial stress analysis using an SOI pixel detector has not been studied. In this study, we developed an X-ray tri-axis analysis system that uses an SOI pixel detector (INTPIX4) and examined its effectiveness. For this purpose, the proposed system was examined in comparison with a conventional measurement system that uses an IP detector[19], [20]. Finally, the effectiveness of the proposed system for measuring rolling contact fatigue of railway rails, which requires high-speed X-ray tri-axial stress measurement, was investigated[21].Section snippetsSOI pixel detector (INTPIX4)Fig.1 shows a cross-section of the SOI pixel detector[7]. This detector is a monolithic type and has a structure in which a high-resistance silicon wafer and a low-resistance silicon wafer are directly bonded. The former is used for X-ray detection, and the latter is used for circuits for data processing. The SOI wafer used in this study was made by the floating zone method (FZ). The FZ wafer was thick, and its resistivity was less than cm[15]. The features of the SOI pixelSample railThe sample was a piece of 60kg JIS (Japanese Industrial Standards) rail. It was a 200mm length cut from a rail used in service for several years. Fig.6 shows photographs of the sample rail used i

sciencedirect.com