Conversation with Merlin [email protected] · Tue Dec 19 2023

Анализ современного состояния исследований в области управления скоростью шарошечного бурениия нефтегазовых скважин

Современные исследования в области управления скоростью шарошечного бурения нефтегазовых скважин являются важной частью развития технологий добычи углеводородов. Управление скоростью бурения имеет прямое влияние на эффективность и экономическую целесообразность процесса бурения.

Одним из современных направлений исследований является разработка инновационных методов и технологий для управления скоростью бурения. Это включает в себя разработку новых материалов для буровых инструментов, усовершенствование систем управления скоростью бурения, а также применение автоматизированных систем и искусственного интеллекта для оптимизации процесса.

Также исследования в этой области направлены на повышение точности прогнозирования характеристик грунтовых пород и улучшение методов контроля параметров бурения. Интеграция современных технологий геофизической разведки и мониторинга также играет важную роль в современных исследованиях.

Другим важным аспектом исследований является разработка устойчивых и экологически чистых методов управления скоростью бурения, которые соответствуют современным требованиям к экологической безопасности и устойчивому развитию.

Несмотря на значительные достижения в этой области, современные исследования продолжают активно развиваться, стремясь к созданию более эффективных и устойчивых технологий управления скоростью шарошечного бурения нефтегазовых скважин.

Перефразируй так, чтобы было понятно, что писала не нейросеть

Современное развитие экономики требует перехода высокие технологии на базе отечествных разработок. Бурение нефтегазовых сквин также нуждается в современных решениях и стратегическом планировании. Основной целью яляется снижение затрат на бур за счет применения новых подходов и инструментов.

. , 5- . - , . [1]. , , , . () , 3,9%, 10,9%, - 10%, - 8,2%. , , , , . , , . [2]. ( ) 29%, ( ) - 38%, 47%. , - , , . , - . , , . , , -, , , . , , 1995-2019 . 28 . , (, , , , , ); , , . ; , . , , - ; , . : --. , : ---- . , , , , , . () () . [3;4] . , , , . , , . , (, , ) [5;6] 1. . 1. [ 5, 6 ] , . , . , (, , . . 2, , , , , ) , , , 150-350, 200-450 250-550% . . 1. , . [ .., .. . . // . . . 2018. 12 (217). . 43-46.] 48% 2018 ., 19% , . . , . 70-80% . 25 30% , . , , , 40-50%. . , 40% , . , 2014 2018 70% , , - 43% . , 70% , , 20% . - , , , , - [7]. , , , . [8;9;10]. - - , .. ( RFMEFI60419X0217, -20-120032890002-3). , , , , . , . , . 2025% . , . , . [11] .3. .2. : , , , - . 85% ; 5 25% . (. 3) . ( ), - [11]. , - , , . . , . , , . . , - , , - , , , . .4. . 3. -2 ). [12]: - . . , ; , . ; , - , , , ; ; , , , - , WITSML. .4. , - . . 4. , , - . , , , IT-, , , . : ; ; ; ; ; . - 4.0 , , , , [13]. , . - , , . , . 6. .5. [ .., .., .., .. . 2019. 12 (243). .3-10. DOI: 10.25728/datsys.2019.12.1] Q C K; DTW Dynamic time warping( ); RMSE Root-Mean-Squared Error ( ). 2- Q C, : , , DTW (Dynamic Time Warping distance) . . , , (DTW-, . dynamic time warping; DTW NN DTW ), . DTW ( ) , . , , , , . , . (RMSE Root-Mean-Squared Error ( )). Big Data SPE 09/04/2020 17720 , .. 12%. 17720 51% . , . 30 % 15 %, [Jacobs, T. (2015). Automated Drilling Technologies Showing Promise. Journal of Petroleum Technology, 67(06), 5055. doi:10.2118/0615-0050-jpt]. , , , 12-18 , . [Feder, J. (2020, February 1). Artificial Intelligence-Driven Timelines Help Optimize Well Life Cycle. Society of Petroleum Engineers. doi:10.2118/0220-0050-JPT]. , , , , , . . , . 6 = ( ) ( ) , . " ", . [Samuel, R. (2019, July 1). Technology F

magazine.neftegaz.ru

.., .. ... 622.24.051.64 .., .. , , . . . - - , . , , . , , . , . . : ; , ; . : , , . , , , . , . , , . : ; ; ; ; : .. / .., .. // . 2019. . 240. . 701-710. DOI: 10.31897/PMI.2019.6.701 . , , , , [9, 13, 18]. , - - , , , PDC (polycrystalline diamante cutters) [1, 5, 9, 10, 12, 13, 15, 17]. : , () , - PDC [3]. . , , , [7, 11]. , .., .. . . [4, 14, 16] , , , : , , ; ; ^ = ^/, - , -1; v - , /. N/v, N - , ( ), . , , . , , . . . , , . N/v [8] , , , , , - . , , . , , . , , , . N N = . . ( , , 1) ( , Q), , k N = 21, k - [2, 6]. : V = + 0 + + DP ; = + FP + D + ; (1) ^ = + + + SPn, .., .. . , . (1) , . , = - - F + (2) , , . , , Q, = + 0 + + FQ + . (3) : (2) (1), - - - Q = - + F (4) Q , , , . (1). ( 013-59) - (). , , . , 013-59 , v, / N, N -/ + + + 3 1,6 2,5 1,4 1,6 0,88 0,64 6 3,2 4,4 2,8 2,7 0,88 0,61 9 5,1 5,4 3,8 3,9 0,75 0,72 12 6,2 6,3 4,7 5,4 0,76 0,86 15 6,6 7,5 6,8 6,6 1,03 0,88 3 2,1 3,2 2,1 2,06 0,63 6 4,5 6,1 3,7 4,09 0,82 0,67 9 6,1 7,8 5,7 6,9 0,93 0,88 12 6,8 8,7 9,5 8,7 1,4 1 15 6,1 9,9 11,5 9,4 1,88 0,95 3 2,7 4,2 2,6 2,9 0,96 0,69 6 5,8 8,4 5,0 5,96 0,86 0,71 9 6,9 9,8 8,0 8,7 1,16 0,89 12 8,6 10,6 12,2 12,5 1,42 1,18 15 8,2 9,8 16,1 16,46 1,96 1,68 625 1020 1480 *". .., .. 001: 10.31897/1.2019.6.701 ; ... , : = 4,78 + 2,63 + 0,675 + 0,125 ; (5) = 0,085 + 0,049 - 0,024 - 0,0185 ; (6) N 1 =1,21 + 0,29 + 0,25 + 0,21 . (7) , : = 6,0 + 2,65 + + 0,15 ; (8) = 0,083 + 0,026 - 0,045 + 0,19 ; (9) N = 0,97 + 0,31 + 0,21 + 0,0094 . (10) , 21 %, 20 %. , : , 47 %. . .1 , (5)-(10), . , , . . , (2) , . .1, . , ( 0,097 /), 1 \, , , , 2 2. 1 2 (.1, ) , , , 1,02 1,1 -/, 7 %. (.1, ) 5 6,3 /, .. 20 %. , . . 1, . (. 1, , , ) . , (. .1, ). .., .. . , 1500 1200 2 , 900 1 8' 2 6 i , ? . v, / 4 2 625 1052 1480 , 1500 900 625 9,5 v, / 5 1052 1480 , 1 500 2 1 900 0,12 5 /V / / V.1 2 *'0.097 - 1 ^ 1 h, / ^^^^0,063 ------- 1 ---- 1 1 2 0,01 , 1500 900 0,182 625 1052 1480 625 1052 1480 , 1500 900 , 1500 900 0,95 \ ^ \ /' /II |\ V V' \ ' V 1,4' " V 1,27 / V ^ = 0,12 1 ___- \ , , ^, -/" / -__0,74 625 1052 1480 625 1052 1480 . 1 . (, ), (, ) (, ) 013-59 (, , ) (, , ) I II - 5 , , 1 , , , , - , , , , . .., .. . (. .1, , ). , , . , 625 -1 (. .1, ) 2, 4 6 /, : 1 = ^ = 2 = 0,05 /; 62560 V, 4 2 = ^ =-= 0,1 /; 62560 3 = ^ = 6 = 0,15 /. 62560 1, 2, 3 (. .1, ) : 1 = 950 , 2 = 1210 3 = 1480 . , . 1052 -1 4 6 /, 1480 -1

cyberleninka.ru

681.5 : 622 . . , . . , . . , . . , , , . . , - , . - ; ; ; - , , , , , . 1,5-2 , , 25-30 % , , , . , : - MWD (Measurement While Drilling), ; - , . ( ), . , . 1. 1.1. : - ( ); - ( ). - ( ). 1.2. (.1): - (, , 2); - : - , ; - , . : X(I) = ((1), (1), (1), (1), 2(1)), I [101 ], X - ; I - (). 1.3. (), : - ; - ( - ) - ; - ; - - . (1) () (V) (. 2). X . 2. - . 3. () : , . (V) : , . 2. ( ) : - - , , . - - . - - , , . , , . 3. 2.1. . 4. , , , (). .4. . . , : , . , , - . 2.2. - - [5]: 1) , : ; ; 2) - ; 3) , , , . , . 5. . .5. - 2.2.1. : - ; - ; - . , , , . : - - (. 6). : - ; - ; - ( (), ()). - , . - (-, -, - . . ). . 6. : - ; - ; - ; DAO (Data Access Objects) SQL. 2.2.2. : - ; - ( ). : 1) (x, y, z) , : , , l. : - = sin^l) costt(l); ~ = sin$(l) sina(l); = cos$7) dl dl dl , , . . , , . , , , . , , : , , . [1]. 2) . : - X1t S1 S2; dsls2(X1). X1i S2 X1i X2 S2. , S1 : dS1S,(X1 ) = min Xl - X2 I; S1,S 2 X 2] eSjl ]\ - S1 S2 : DS1,S 2 = _min dS1,S 2 (X 1i ) : - - [1]. - - , , , ; : - ; Y - X ; Z - . - - DAO P- ; - - DAO F- ; - - ; - - . i , ? . 2.2.3. : 1) ; 2) ; 3) . : 1. - , . . , , [2]. 2. . - . , [4]. 3. - . : ; ; : - , ; - , . . : 3=31+32, 1 - , , 2 - . 3. , . , , . [1] : (); , . [6]: = {, ()}, 1=1,.., (1) Mi - I - ( I - ); - ; - , : = { 2, }. 1 - : 1 = {1 1,}, 11 - (, , , .); 1 - ( , , ); 2 - ( , , .); 3 - ( , .). : (, , ); (, ); - . - : / = (X, ), (2) X - , ; / - ; - ; - . [1], (2) : d = /(,); dl d- = /);, dl () =/,(,); dy=f (a,ff); dl Jy dl , , x, y, z - , ( ), x, y, z, ..: X=( , , x, y, z); f fa - , ( ). fx, fY, f - , : fr (,) = sinecosa; ' (4) fY(, ) = sin sin ; fz () = cose. , (3) fe,fa. . , , , , () [1]. , (3), ( ): 2) - : 11 < < 12, 1- ; ,< < , -1 - ; 1 ' ' 3) , : / = (, ), = 1,..., -1; : : = (); = (); = (); = (1); 2 = 2(), [1, ]. (3). , , , . 7. ^ Start ^ I : {l, , ,}, = X(l) = (, , x, y, z), [l0 lk ] (5) , (), . , , , . ^ [4]. (5) (3). : 1) : 0=( 0, 0, 0, 20); . 7. , , . . , - , . 1. , . . / . . , . . , . . . . : , 1988. 124 . 2. , . . - / . . , . . , . . // , 2000, 12. . 120-122. 3. Nugaev, I. F. Computerized technology of control and decision support oil well directed drilling / I. F. Nugaev, V. I. Vasilyev, R. I. Alimbekov, A. S. Shulakov // Proc. Of 4-th Int. Conf. On Computer Science a

cyberleninka.ru

состояние исследований в области управления скоростью шарошечного бурениия нефтегазовых скважин.

Исследования в области управления скоростью шарошечного бурения нефтегазовых скважинеют важное значение для оптимизации процессов добычи углеводородов.

В настоящее время актуаль этой темы обусловлена потребю в повышении эффективности и научной составляющей промышленных технологий,обенно в нефтегазовой отрас. Основные направления исследований включают в себя разработку инеллектуальных автоматизированных систем управления процессом шарошечного бурения, модерзацию буровых технологий, разработку новых материалов для буровых инструмент, а также применение современных методов контроля и мониторинга.

Так исследования направлены на улучшение точности и прогнозирования характеристик грунтовых пор, оптимизацию процессов бения, а также снижение затрат и времени, затраиваемого на бурение. Это такжеключает в себя разработку экологически чистых методов управления скоростью бурения, отвечающих современм экологическим стандартам.

читывая активное развитие исследований в этой обсти, можно сказать, что современ исследования по управлению скоростью шошечного бурения нефтегазов скважин ориентированы на создание более эффективных, экогически чистых и устойчивых технологий в этой отрасли.

( ) . , . , , , . , 85% . , . , . .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. , J.F. Brett, S. Salehi, X. Shi, C. Chapman, J. Sugiura . , , . . , , , , . , . , . . , , , , . , , .. , .. , .. , .. , .. , E.. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C. Chapman, J. Sugiura . , . , , .. , .. , .. , .. , .. , .. , .. , A. Isidori, H.K. Khalil, K.S. Narendra . , , , , . , , . , . , 30 . ., 50% , . (), . , , , . , , . , on-line , . . . : 1. . 2. . 3. . 4. . 5. , . . , , , , . : 1. , , , , , . 2. , , , , . 3. , , , , , , . , . . , , . , . . , . , , , . (. ), (. ), (- ()), , . ), ( , , . ), (. ) : , ; , . - - , 09.03.03 21.05.04 . : - - 16.740.11.0622, 1.3.1. (2011 - 2013 .); - -2531.2014.8 (2014 - 2015 .); - - , , , (2013 .) (2014 .); - , (2015 .). 2014/15 ( 1434 10.11.2014 ), (2016 .), (2016 .), (2016 .). (, 2017 .). : 1. , , , . 2. , , . 3. , , . . 30 , 8 , , 7 , Scopus, 11 , . 2 , 2 . . : X - - (, 2012); XLI , , IT + SE43 (, , -, 2013); I International Scientific Conference "Global Science and Innovation" (, , 2013); - : (, 2014); XV - . 2014 (, 2014); XIX - (-, 2015); - - (, 2015); IOP Conference Series: Materials Science and Engineering (Bristol, UK, 2015, 2016); Modern informatization problems: Proceedings of the XXI-th International Open Science Conference (Yelm, USA, 2016); XXI - , (, 2016). . , , , , 149 , 1 . 128 , 28 5 . 1. 1.1 - . - . ( 85%) ( ), . [77, 95, 129], (). .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. [15, 18, 19, 36, 69, 86, 94, 95, 121]. , , . , , . . , , , , , , . ( ), ( ), ( - ) ( ), , , . - : - "Caterpillar", 2011 "Bucyrus", "Terex" "Reedrill"; - "Atlas Copco", , "Ingersoll-Rand"; - "Sandvik", "Driltech"; - "P&H Mining Equipment", "Joy Global". : - -; - , . ; - - ( ), . . 1.1 1.2. 200 30 - 40 380 140 ( P&H Mining Equipment, ). , . 1.1 - -, , , , , , Caterpillar (Bucyrus - Terex - Reec rill) MD 6240 Series 152 - 270 55,5 12,8 - 15,8 222 62,7 MD 6290 Series 152 - 270 52,7 8,6 - 11 277 54,6 MD 6420 Series 229 - 311 74 10,3 - 16,5 382 95,6 MD 6540 Series 229 - 381 85 16,5 - 20 382 131,1 MD 6640 Series 251 - 406 85,3 19,81 627 154 MD 6750 Series 273 - 444 39,6 18,3 733 183,7 Atlas Copco (Ingersoll-Rand) DM25-SP 102 - 178 15,2 12,2 111 28 DM30 127 - 171 45 7,9 13

dissercat.com

1. 121.1 121.2 181.3 201.4 31 37 2. 402.1 402.2 452.3 52 67 3. 693.1 693.2 753.3 843.4 893 3.5 . 96 102 103 . 105 . . 120 . , . , , , . , 85% . , . , . .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. , J.F. Brett, S. Salehi, Shi, C. Chapman, J. Sugiura . , , . . , , , , . , . , . . , , , , . , , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C. Chapman, J. Sugiura . , . , , .. , .. , .. , .. , .. , .. , .. , A. Isidori, H.K. Khalil, K.S. Narendra . , , , , . , , . , . , 30 . ., 50% , . (), . , , , . , , . , on-line , . . . :1. .2. . . . , . . , , , , . :1. , , , , , .2. , , , , .3. , , , , , , . , . . , , . , . . , . , , , . (. ), (. ), (- ()), , . ), ( , , . ), (. ) : , ; , . - - , 09.03.03 21.05.04 . : - 16.740.11.0622, 1.3.1. (2011 2013 .); -2531.2014.8 (2014 2015 .); - , , , (2013 .) (2014 .); , (2015 .). 2014/15 ( 1434 10.11.2014 ), (2016 .), (2016 .), (2016 .). (, 2017 .). :1. , , , . , , . , , . . 30 , 8 , , 7 , Scopus, 11 , . 2 0 , 2 . . : X - (, 2012); XLI , , IT + SE`13 (, , -, 2013);1 International Scientific Conference "Global Science and Innovation" (, , 2013); - : (, 2014); V - . 2014 (, 2014); XIX - (-, 2015); - - (, 2015); IOP Conference Series: Materials Science and Engineering (Bristol, UK, 2015, 2016); Modern informatization problems: Proceedings of the XXI-th International Open Science Conference (Yelm, USA, 2016); XXI - , (, 2016). . , , , , 149 , 1 . 128 , 28 5 . , . , , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C.D. Chapman, J. Sugiura [16, 18, 21, 31, 73, 98, 126, 131, 133, 146]. , (), [143]. ( 1,2, 2, 125, 1,2 .) , , . (CDC, DAT .) , , . , , () [10, 117, 138], . 5-10% , 15-20% [30], 5-7% , 90-100%. , [92, 116]. , , , . ( ) , . , . . . , , . . - , , , - . - , , [89]. 1.3 - . ( 1.3): U(t); , (t); Z(t), Y(t) (), . , , . [61, 89]. , , ., - , . . . . , , , . [23, 82, 83, 119]. . : 1 2 3 4 5 6 n, . .

dslib.net

, 107(03), 2015 1 622.24:622.143 05.00.00 ..., -=6454-3658 , , , . , . , S - , . , . , .. , . , , . . . , S- . - - . . 7199%. " " : , UDC 622.24:622.143 echnical sciences THE ANALYSIS OF MATHEMATICAL MODELS OF MECHANICAL SPEED OF DRIVING FOR OPTIMIZATION OF PROCESS OF DRILLING OF OIL AND GAS WELLS T suprikov Aleksandr Aleksandrovich Cand.Tech.Sci., associate professor RSCI SPIN-code=6454-3658 Kuban state technology university, Krasnodar, Russia The analysis of models is carried out from a definition position for system of optimum control of drilling of basic mathematical model on which calculation of optimum regime parameters is possible. The main equation for management of process of drilling of wells is the mathematical model of mechanical speed of a driving as function from axial load of a chisel, the speed of rotation of a chisel and a consumption of boring solution for cleaning of a well of destroyed breed. Key parameter is axial load of a chisel; graphically dependence of speed of drilling on loading has S appearance - a figurative curve of Bingham which has a convex mathematical extremum. In the article, domestic and foreign models of drilling are considered; their schedules according to skilled data of conducting of wells are constructed. Models are sedate, i.e. reflect only a linear site of a curve of Bingham, data of trade drilling is well approximated with initial and linear sites of curves. Thus, on them it is possible to make only rational management of process, and the optimum mode exists only on border of range of definition of function. Only the A.A. Pogarsky model is suitable for optimum control, having a mathematical maximum and S-shaped form of a curve. All models depend on two parameters of management - load of a chisel and speeds of rotation of a chisel and don't consider the third on influence on drilling speed parameter - a consumption of boring solution. Therefore, Pogarsky's model was finished by inclusion in it in an explicit form of a consumption of boring solution. Check of model by means of the regression analysis of skilled data of drilling from official reports of drilling foremen showed its reliability for 71-99%. The model allows carrying out optimum control of drilling in the "axial load of a chisel" parameter Keywords: MODEL OF MECHANICAL SPEED OF DRIVING, OPTIMUM CONTROL OF DRILLING http://ej.kubagro.ru/2015/03/pdf/61.pdf , 107(03), 2015 2 . , , , , .. : = GV, (1) G - , n - , , S - . -, .. . 0,2-0,8, 2,5 [3] . S [4] . S , S =0,6. 0,4 - 0,75, 0,1 1. (1) , Q () . S- (. 1) - G , , G , - , .. Q . . http://ej.kubagro.ru/2015/03/pdf/61.pdf , 107(03), 2015 3 1 S- (1) ( ) 1-2 , .. . . .. . -- [7]. , - , . , G r = ------ [a(D3)]e : G = G/D - , D ? 100 2 r = e n n0428 + 0.2(1 - e " ) 100 ~ 2 , http://ej.kubagro.ru/2015/03/pdf/61.pdf , 107(03), 2015 4 100 100 2 2 = n n075 + 0.5(1 - n ) , a(D3) =0,928 D32 +6D3 + 1; - ; D3 - ; - ; " . , , , , : (G -G0)n f(h) (2) G0 - , , f(h) - . .. [3,4] : Um 2 n G 1 + b4G4 (3) , , - , , (2), . b Q , Nd = max b = 1/G. http://ej.kubagro.ru/2015/03/pdf/61.pdf , 107(03), 2015 5 . 1 (3). , (3) , (1) (2), .. b, Q , . . - [1] , "-" . (1), , 3 ( ) . = f(G) , ( = 0,2-0,8 2,5; 3 = 0,6-1; = 0,1-0,75; =20-60; b = 0,1-4; n= 40 90 /) - . 1. - 2. http://ej.kubagro.ru/2015

cyberleninka.ru

Перефразируй так, чтобы было понятно, что писала не нейросеть и напиши очень развернуто деловым языком, мне нужно для научной работы

Современное развитие бурения нефтегазовых скважин сталкивается с рядом сложных проблем, таких как потеря циркуляции и перелив в скважине, возникающие из-за увеличения давления в залежах нефти и газа. Для решения этих проблем активно применяется технология управляемого давления при бурении (MPD), которая позволяет управлять давлением в скважине за счет подачи обратного давления с поверхности. Однако данная технология имеет недостаток в виде негативного воздействия на окружающую среду из-за шума, создаваемого повышенным давлением на поверхности.

В свете этих технологических вызовов были разработаны инновационные методы ускорения процесса бурения на глубине с целью сокращения времени проведения буровых работ. Использование специализированных инструментов для ускорения процесса бурения позволяет достичь этой цели без значительных дополнительных затрат, изменений в буровом оборудовании и влияния на нормальные технологические процессы.

Другим важным аспектом является контроль давления в скважине в различных стадиях бурения, таких как подготовка к установке обсадной колонны, обсадка скважины, циркуляция бурового раствора. Точное определение давления в этих процессах необходимо для разработки оптимального плана установки обсадной колонны и своевременной коррекции обратного давления.

Недавние исследования демонстрируют, что управление скоростью бурения остается важной областью развития в нефтегазовой промышленности, и инновационные подходы в этой сфере становятся все более актуальными, в частности с точки зрения ускорения процесса бурения и улучшения эффективности всего цикла строительства скважин.

1. IntroductionComplicated formation pressure systems, such as NPWs in oil and gas wells, are increasing, which may lead to complex accidents. Lost circulation and overflow in the wellbore are two typical accidents that occur when the wellbore pressure is beyond the scope of pore pressure and leakage pressure during the drilling operation [1,2,3]. To solve this problem, managed-pressure drilling (MPD) continues to rely on the back pressure applied by the surface high-pressure pump at the wellhead to precisely control the annular pressure profile, despite the noise pollution generated by the high-pressure pump [4]. After drilling to the predetermined depth with MPD technology, the next step is always to pull out of hole (POOH) and prepare the next construction called casing running. The calculation of wellbore pressure in the processes of pre-casing preparation, down-casing and drilling fluid circulation are important for developing the casing running plan reasonably and adjusting the back pressure in a timely manner.Surge pressure, generated during the process of casing running, is an important part of wellbore pressure that is crucial for avoiding complex accidents in wellbores. In various working conditions, extensive studies have been conducted to analyze and gain a comprehensive understanding of surge pressure. The field studies aimed to examine the impact of fluid properties and wellbore geometry on surge and swab pressures [5,6,7,8,9]. The findings of these studies consistently indicate that both surge pressures exhibit a positive correlation with increasing tripping speeds and wellbore depths. These studies only investigated two types of surge pressures, both of which are positively correlated with an increase in tripping speeds and wellbore depths. More recent studies have further confirmed the strong impact of tripping speeds, wellbore geometry, flow regime, and fluid rheology on surge pressures [10,11,12,13,14,15,16].However, the drilling industry greatly relies on surge models and simulators. At present, some models, including steady-state models and transient models, have been proposed to calculate the surge pressure during POOH and casing running processes. Before the 1970s, the models were mainly based on the theory of the steady-state method and usually considered the fluid in the wellbore as a Newtonian model [17,18,19,20]. Furthermore, more and more models were developed considering the Bingham model, power-law model and RoberstonStiff model [21,22,23]. In recent years, the impact of stabilizer placement on the annular clearance has been taken into account in the prediction of the volatility stress model [24]. Meanwhile, the error of surge pressure calculation results reaches 3% [25]. These models mainly analyze the influence of drilling fluid density, stabilizer quantity, annular clearance, and drill string eccentricity on the surge pressure. In summary, while surge models and simulators have made significant progress in predicting surge pressure during POOH and casing running processes, there are limitations in capturing the full complexity of fluid behavior and accurately accounting for all factors that influence surge pressure. Further research and advancements are needed to improve the accuracy and reliability of surge models in the drilling industry.After mid-1970s, with the improvement of computer calculation capabilities, the transient method was applied in the calculation of surge pressure. Fluid compressibility, duct wall expansion, and fluid inertia were considered with the establishment of the surge pressure model [26]. The variation of maximum surge pressure and swabbing pressure at each depth within the wellbore with time were predicted proposed solving the transient surge pressure of each passage using the mixing implicit feature line method, which obtained the numerical solutions of transient surge pressure under various conditions [27]. To acquire the wellbore pressure and ground stress field

mdpi.com

Author / Affiliation / Email Article Menu Font Type: Arial Georgia Verdana Open AccessArticle 1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China 2 Jiangsu Drilling Company of Sinopec East China Engineering Company, Qingdao 266580, China 3 Petroleum Engineering Research Institute of Petro China Tarim Oilfield Company, Korla 841000, China * Author to whom correspondence should be addressed. Submission received: 30 June 2022 / Revised: 29 July 2022 / Accepted: 4 August 2022 / Published: 9 August 2022 Abstract: Increasing drilling speed and shortening the well construction period are the goals of the drilling field. The use of downhole speed-up tools has been noted for its advantages such as no additional cost, no change in drilling equipment and no impact on normal drilling operations. However, conventional downhole speed-up tools cannot meet the needs when the drilled formation contains hydrogen sulfide. Then, the technology test on increasing drilling speed by absorption and hydraulic supercharging of drill string in hydrogen sulfide formation was carried out in well Wanweiye1 (WWY1), Anhui Province, China. The results show that: firstly, the speed-up device by absorption and hydraulic supercharging of drill string can be used in the formation containing hydrogen sulfide, and can still perform normal drilling operations with a hydrogen sulfide concentration of 567 ppm; secondly, the speed-up technology by absorption and hydraulic supercharging of drill string has a significant speed-raising effect in the region containing hydrogen sulfide and can raise the speed by 62.5% to 92.05%; thirdly, the speed-up device by absorption and hydraulic supercharging of drill string can meet the needs of high density killing fluid. Once the well WWY1 suffered an overflow, the device did not affect the killing operation when the killing fluid density reached 2.2 g/cm3 and killing time reached 104.8 h. 1. IntroductionWith the increase in the development of oil and gas resources in deep formations, the number of deep and ultra-deep wells in new and old exploration areas is increasing, and the drilling depth is getting deeper and deeper, which makes the problem of slow drilling speed of deep wells become one of the most important problems faced by drillers [1,2]. Although a variety of techniques and methods have been developed to improve drilling speed, such as high-pressure jet drilling, underbalanced drilling, optimized drilling etc, the downhole speed-up tools have still attracted attention because they do not increase excessive additional costs, do not change drilling equipment, and do not affect normal drilling operations. So far, researchers have developed many speed-up tools, mainly including downhole dynamic drilling tools, rotary impact drilling tools, downhole pulsed cavitation jet generators, downhole torsion impact drilling tools etc. [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. These tools have played their positive role, improving drilling speeds. However, they have shown deficiencies and problems in the process of increasing drilling speed in formations containing hydrogen sulfide. In this paper, the speed-up technology by drill strings absorption and hydraulic supercharging is proposed to improve drilling speed in hydrogen sulfide formation, and the experiment is carried out in Well WWY1, the results show that the speed increase effect is obvious. 2. Requirements for Speed-Up Tools in Formations Containing Hydrogen Sulfide(1)The hydrogen sulfide environment requires speed-up tools to be resistant to corrosion. Hydrogen sulfide is dissolved in water to form a weak acid, which can corrode metals and rubber, mainly in the form of electrochemical corrosion, stress corrosion and hydrogen embrittlement. The harm to rubber materials is that it can accelerate its aging and shorten its service life. In summary, the hydrogen sulfide environment requires the use of corrosion-resistant metal

mdpi.com

Bit efficiency is determined by several factors; penetration per bit, rate of penetration, drilling speed per run, and operating costs per meter of penetration. Optimal drilling conditions usually meet the criterion of a minimum cost per 1 m drilled, which is defined as the minimum amount of energy required for rock destruction, high mechanical penetration rates and effective service life of the drilling tool.With that, the range of parameters that impact mechanical drilling performance is complex and depends on different drilling parameters (geological features, mechanical properties of the rocks, design features of the rock cutting tools, etc.).In the above conditions, expressing the drilling performance indicators through specific variables determines the drilling parameters influence on drilling performance.The main advantages of the information technologies application to technical processes control is to improve the process quality, its productivity, reduce time, cost, and increase the accuracy and stability of the operations performed.Well drilling a rock destruction process is accompanied with numerous and various physical phenomena, which effectiveness shall be assessed by a number of quantitative indicators specifying the performance speed of individual operations, for example: rate of penetration (mechanical speed; drilling speed per run; m/hour; commercial, m/rig-month; bits consumption per 1000 m of penetration, pcs; drilling time schedule per well or 1 m drilled, hour; cost of 1 m drilled, RUB, etc. and qualitative indicators describing the achievement of well drilling performance targets (core recovery, %; well deviation intensity, degree/m, etc.) [1].These values depend on several non-controlled (geological settings of drilling, rock mechanical properties, conditions of rock occurrence, random events,etc.) and controlled factors, which include the drilling parameters.However, these criteria do not always enable a reliable assessment of drilling efficiency.According to V. S. Fedorov [2, 3, 4] the effect of the operating parameters on drilling performances is complex, and it is not an easy task to assess the different parameters effects on drilling based on the quantitative indicators.To optimize the drilling process a modeling was built based on the theoretical calculations and empirical regularities. The following works are known among domestic researches: V. S. Votenko [1], V. S. Fedorov [4], B. A. Zhlobinsky [5], B. V. Baydyuk, V. Yu. Bliznyukov, V. S. Zaretsky [6], V. D. Evseev [7], V. V. Neskoromnykh [8] etc. considering the effect of different factors (geological settings, drilling parameters, bottomhole conditions, etc.) on rock destruction.Hence, according to V. S. Fedorov, the following parameters have a significant impact on the rate of well deepening: the mechanical properties of rocks, conditions of occurrence; origin of the substance filling pore space; method of rock destruction; drilling bit design and service life; methods of cuttings removal from hole; perfection and power of drilling equipment, etc.The effect of rock destruction tools operating parameters on rotary and turbine drilling performances as described in the above publications depicts the general trends of the drilling rate VMEX and bit operating time td (service life) which changes over the course of rock destruction is shown in Fig. 1.The effect of each parameter G0,n,Q on rock destruction during drilling is a function of the preset values of the other parameters. An increase in of one of the controlled parameters, such as, axial weight, contributes to a drilling performances improvement only in combination with other controlled parameters: circulation fluid flow rate, bit speed, etc [7].In turbine drilling, a change in drilling mud flow rate Q results in a change in the bit speed n and axial weight G0. Here, the main drilling parameter is the volume of circulation fluid pumped Q. In this case, the axial weight on bit G0 is a func

rogtecmagazine.com

Состояние исследований в области управления скоростью шарошечного бурениия нефтегазовых скважин.

Инновации в области управления скоростью шарошечного бурения нетегазовых скважин являются важнойастью современной нефтяной промышности. Исследования в этой области охватыва различные аспекты, такие как разработка новых технологий для повышения эффективности бурения, улучш материалов буровых инструментов, оптимизацию систем управления скоростью бурения, а также внедрение автоматизированных систем и технологий искусственного интеллекта оптимизации процессов бурения.

Современные исслования также сосредотачиваются на разке методов прогнозирования характеристик грунтовых пород, улучшении методов контроля параметров бурения и внедрении передовых технологий геофизичесой разведки и мониторинга.роме того, важным аспом исследований является создание экологически чистых методов управления скоростью бурения, соответствующих современным требованиям к экологическойопасности и устойчивому развитию.

сследования в этой области осенно актуальны в свете постнного внедения новых технологий и стремления к повышению эффективности добычи углеводородов. Они направлены на повышение производительности скважин, снижение затрат наурение и обслуживание скважин, а также минимизацию негативного воздействия на окружающую среду.

Эти исследования остются важным направлением в развитии нетяной промышленности и будутолжать способствовать улучшению проессов бурения и эксплуатации нетегазовых скважин в будущ.

, . 1. . 1.1. . 1.2. . 1.3. . 1.4. . 2. - , . 2.1. , . 2.2. . 2.3. . 2.4. .105. 3. . 3.1. . 3.2. . 3.3. . 3.4. ( ). 4. . 4.1. . 4.2. . 4.3. . 4.4. , . 4.5. , . 5. . 5.1. , . 5.2. . 5.3. . 5.4. . 5.5. . 6. . 6.1. . 6.2. . 6.3. . 6.3.1. . 6.3.2. . 6.3.3. . 7. , . ( ) : " " " " () , , , , , ,- . , ( - ) . , . . , : ; ; ; . () . ( ) , . , , ( - ) , , , (: ) . () - -- - --'% / ./" /-\ ! | / \ > * * , , , , , ^^ () , ( ), . , , ( ) , . : , , ; ; , , ; , " " ( ) . "" . , , , . . , . , , , , - . , (), ( ) , , - , , , : , . , ( ). , : , , ; , , , . , , - . , . , , , . , : ; . : ( ), , , , , , , , . . . -, , , - , . , , , - , . , . . : () ; ; ; , , , , ; , ( ) ; , ; ; , ; ; ; ; . . , , ; , ; ; . . , , , , . , , - - , ; , , . , ; , ; , . : - ( ) , ; - () - ; - , ; - , , : ; ; ; ; , ; ; - ; - . . 1964-75 .. - . , "", 1972 . - - , - 385 . . ( 1984 .). : - (); - ; - : " " - , 1990", " , I -, 1996"," - , 1997". . , , , : 1- (. , 1967); " " (. , 1968); - , , , - " - , " (. , 1969); - (. . 1985); IV, - " " (. , 1986); - (. , 1991); (.. , , , 1984-1992); "" (. , 1984-99); - " " (. , 1995); " - " (. , 1998); - "" (. , 1998 .); 2- - " ". ( . , 1999); (. , 2000). (1972). . 1983 , , : (1965-1976), (1976-1983), (1983-1993), . (1993-1999). , , : .. , H.H. , .. , A.A. , .. , .. , .. , .. , .. , .. , C.B." , .. , .. , .., .. , .. , .. , .. , .. , .. , .. . . B.C. . .. , . . 46 , : 3 , 37 6 . : 1. ( ), , , , , , , , - . 2. , /, , , , , . 3. , , , , , , , , 0,985, , , 0,4.0,6. 4. , , , , . , , 1. , , . - - - , - , , , . 2. , , , , , . 3. , , , , ( ) : . , , - . 4. 7, , 7 ,

dissercat.com

( ) . , . , , , . , 85% . , . , . .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. , J.F. Brett, S. Salehi, X. Shi, C. Chapman, J. Sugiura . , , . . , , , , . , . , . . , , , , . , , .. , .. , .. , .. , .. , E.. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C. Chapman, J. Sugiura . , . , , .. , .. , .. , .. , .. , .. , .. , A. Isidori, H.K. Khalil, K.S. Narendra . , , , , . , , . , . , 30 . ., 50% , . (), . , , , . , , . , on-line , . . . : 1. . 2. . 3. . 4. . 5. , . . , , , , . : 1. , , , , , . 2. , , , , . 3. , , , , , , . , . . , , . , . . , . , , , . (. ), (. ), (- ()), , . ), ( , , . ), (. ) : , ; , . - - , 09.03.03 21.05.04 . : - - 16.740.11.0622, 1.3.1. (2011 - 2013 .); - -2531.2014.8 (2014 - 2015 .); - - , , , (2013 .) (2014 .); - , (2015 .). 2014/15 ( 1434 10.11.2014 ), (2016 .), (2016 .), (2016 .). (, 2017 .). : 1. , , , . 2. , , . 3. , , . . 30 , 8 , , 7 , Scopus, 11 , . 2 , 2 . . : X - - (, 2012); XLI , , IT + SE43 (, , -, 2013); I International Scientific Conference "Global Science and Innovation" (, , 2013); - : (, 2014); XV - . 2014 (, 2014); XIX - (-, 2015); - - (, 2015); IOP Conference Series: Materials Science and Engineering (Bristol, UK, 2015, 2016); Modern informatization problems: Proceedings of the XXI-th International Open Science Conference (Yelm, USA, 2016); XXI - , (, 2016). . , , , , 149 , 1 . 128 , 28 5 . 1. 1.1 - . - . ( 85%) ( ), . [77, 95, 129], (). .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. [15, 18, 19, 36, 69, 86, 94, 95, 121]. , , . , , . . , , , , , , . ( ), ( ), ( - ) ( ), , , . - : - "Caterpillar", 2011 "Bucyrus", "Terex" "Reedrill"; - "Atlas Copco", , "Ingersoll-Rand"; - "Sandvik", "Driltech"; - "P&H Mining Equipment", "Joy Global". : - -; - , . ; - - ( ), . . 1.1 1.2. 200 30 - 40 380 140 ( P&H Mining Equipment, ). , . 1.1 - -, , , , , , Caterpillar (Bucyrus - Terex - Reec rill) MD 6240 Series 152 - 270 55,5 12,8 - 15,8 222 62,7 MD 6290 Series 152 - 270 52,7 8,6 - 11 277 54,6 MD 6420 Series 229 - 311 74 10,3 - 16,5 382 95,6 MD 6540 Series 229 - 381 85 16,5 - 20 382 131,1 MD 6640 Series 251 - 406 85,3 19,81 627 154 MD 6750 Series 273 - 444 39,6 18,3 733 183,7 Atlas Copco (Ingersoll-Rand) DM25-SP 102 - 178 15,2 12,2 111 28 DM30 127 - 171 45 7,9 13

dissercat.com

DOI: 10.15593/2224-9923/2014.10.5 622.243.92 .., 2014 .. , , - . . . , . , . . , . : . . . , , , . : , , , , , , , , , . TO THE QUESTION OF AUTOMATION OF OIL AND GAS WELLS DRILLING WITH SCREW DOWNHOLE MOTORS A.V. Vervekin Perm National Research Polytechnic University, Perm, Russian Federation Efficiency of the electro powder brakes application on the example of geotechnical studies diagrams technical analysis is examined. Examples of drilling in hard and interbedded by the drilling extent rock with and without the electro powder brakes are shown. The problem of modern automation of oil and gas wells drilling process is highlighted. Decision on electro powder brake upgrades that can provide high mechanical penetration speed in drilling oil and gas wells is proposed. Stages of implementation feed controller bit are designated, the basic principle of which is to control the differential pressure drop. A positive result for the development of the concept and connection to the control brakes electro powder closet layout is indicated. Also the influence of the energy characteristics of low-speed and high-speed screw downhole motors on scheduled rate of penetration in drilling oil and gas wells, as well as the human factor in the operation of the screw downhole motors is shown. The absence of modern automation drilling and operation of downhole motors process is noted in two parameters: control the rate of change of pressure in the discharge line and maintaining a given differential pressure drop across the mud motor. A method for determining the rock moment capacity in downhole conditions in drilling oil and gas wells with screw downhole motors is shown. The influence of the axial load on the rotation torque is considered. The studies determined that one of the important aspects of the drilling, which increase scheduled speed, is operational dosage and automated management of hydraulic power supplied in rock failure in the process of drilling oil and gas wells with hydraulic downhole motors. Keywords: drilling oil and gas wells, screw downhole motors, control bit feeding, automation of the drilling process, electro powder brake, mechanical speed control, hydraulic power, torque, differential pressure drop, energy characteristic. - , , . , , , , ; - , , .. . [1] ( ) , , ( ). , - . - , . [1] , , . . , , , .. . - , , - . , . [1]: - () . . : ( ), ( ) . . . - , , . [1] , 0,1-0,25 , 0,002 . , . , , . , , . [2] : , . . - . [3] : - . . , . [3] - . - - , . , . - - . : , .. , . , , ( ) , , , , . , . , , : , - , , . [3] . , . . , , ( .. -, 2-15 %), (), , ( .. , 0,01 %). , , , . [3], , 1 , 5-10 , - 10-15 . 1,5-2,0 . - () (). . [4, 5], , : , ; - , ; ( - ). - , (, ). , , , () . , : , . , Q = . , , , , . . . , , . , , , . (, , .) , , . . . - , , , ( ), , . : , . [4] . : ,

cyberleninka.ru

Разработка информационной системы поддержки принятия решений в области управления скоростью шарошечного бурениия нефтегазовых скважин

Информационные системы поддержки принятия решений (ИСППР) в области управления скоростью шарошечного бурения нефтегазовых скважин играют важ роль в оптимизации процессов бурения и повышении эффективности добычи улеводородов. Разработка такой системы предполагает интеграцию различных, алгоритмов и моделей для анализа прогнозирования параметров бурения, а также принятиятимальных решений на основе получен информации.

Такие информационные системы могут включать в себя модули для мониторинг и анализа параметров скважин буровых работ, интеграции данных с различных источников (например, буровых журналов, данных геологической разведки, информации о буровом оборудовании), а также моделирования и оптимизации процессов буренияРазработка ИСППР включает в себя так этапы, как определение требовани к системе, выбор подходящих методов анализа данных, создание моделей для прогнозирования параметров бурения, разработка пользовательск интерфейса для удобного доступа к информации и принятия решений. Также важным аспект является обеспечение безопасности и защиты данных, с учетом конфиденциальности информации в нефтегазовой отрасли.

Задач ИСППР в области управления скоростью шарошечного бурения включаюттимизацию работы буровой установки, улучшение качества проработки сквин, снижение времени бурения, а также минимизацию рисков и затрат. Интегция современных методов анализа данных и технологийскусственного интеллектаозволяет создатьолее точные и эффективные системы поддержки принятия решений данной области.

Таким образом, разработка информационной системы подержки принятия решений в обла управления скоростью шарошечного бурения нефтазовых скважин представляет собойожный процесс, направленный на повшение производительности и безопасности буровых работ и оказание влияния на всю цочку добычи углеводород.

1. 121.1 121.2 181.3 201.4 31 37 2. 402.1 402.2 452.3 52 67 3. 693.1 693.2 753.3 843.4 893 3.5 . 96 102 103 . 105 . . 120 . , . , , , . , 85% . , . , . .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. , J.F. Brett, S. Salehi, Shi, C. Chapman, J. Sugiura . , , . . , , , , . , . , . . , , , , . , , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C. Chapman, J. Sugiura . , . , , .. , .. , .. , .. , .. , .. , .. , A. Isidori, H.K. Khalil, K.S. Narendra . , , , , . , , . , . , 30 . ., 50% , . (), . , , , . , , . , on-line , . . . :1. .2. . . . , . . , , , , . :1. , , , , , .2. , , , , .3. , , , , , , . , . . , , . , . . , . , , , . (. ), (. ), (- ()), , . ), ( , , . ), (. ) : , ; , . - - , 09.03.03 21.05.04 . : - 16.740.11.0622, 1.3.1. (2011 2013 .); -2531.2014.8 (2014 2015 .); - , , , (2013 .) (2014 .); , (2015 .). 2014/15 ( 1434 10.11.2014 ), (2016 .), (2016 .), (2016 .). (, 2017 .). :1. , , , . , , . , , . . 30 , 8 , , 7 , Scopus, 11 , . 2 0 , 2 . . : X - (, 2012); XLI , , IT + SE`13 (, , -, 2013);1 International Scientific Conference "Global Science and Innovation" (, , 2013); - : (, 2014); V - . 2014 (, 2014); XIX - (-, 2015); - - (, 2015); IOP Conference Series: Materials Science and Engineering (Bristol, UK, 2015, 2016); Modern informatization problems: Proceedings of the XXI-th International Open Science Conference (Yelm, USA, 2016); XXI - , (, 2016). . , , , , 149 , 1 . 128 , 28 5 . , . , , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C.D. Chapman, J. Sugiura [16, 18, 21, 31, 73, 98, 126, 131, 133, 146]. , (), [143]. ( 1,2, 2, 125, 1,2 .) , , . (CDC, DAT .) , , . , , () [10, 117, 138], . 5-10% , 15-20% [30], 5-7% , 90-100%. , [92, 116]. , , , . ( ) , . , . . . , , . . - , , , - . - , , [89]. 1.3 - . ( 1.3): U(t); , (t); Z(t), Y(t) (), . , , . [61, 89]. , , ., - , . . . . , , , . [23, 82, 83, 119]. . : 1 2 3 4 5 6 n, . .

dslib.net

004.738.5 . . 1, . . 2 . , 2, , 630090, E-mail: 1 [email protected]; 2 [email protected] - . - . - , , . : , , , , Business Intelligence, OLAP, . , , . () , . , , - . , , , , [1]. . , , , . , . , : ; ; , , ; . , . , - ISSN 1818-7900. . : . 2012. 10, 2 . . , . . , 2012 . , . - . . 1950- . . - , , . , , , . , [2]. - - - , . , , , -. , , , , () . [3]. , . - . () - , , , . . , , , ? . , / . , . , , , , . . (). - , . , , , , . , , , . (. 1) [2]. , , . . , , , (CAD, OLAP, Data Mining). , , , . , , . , ^ . 1. , . (). - , - ( ) [9]. , . , . . , . , , , : ; ; ; ; . , , , , . , , . , , . ( , ) . . , , . . . () . , . . , , - , . -, , - . - , , , , [2; 5]. . - . , , , . , , . , , . , : (Manufacturing Resource Planning, MRPII), (Just-in-Time, JIT), / (Lean Production), (Theory of Constraints, ToC), (Kanban) . , , , [7]. , , , : , - . , -, Business Intelligence (BI) BI- 1. BI - , , , , . BI- , - , 2. , , . - - . , . . - Microsoft Project, Time Line, Project Expert. : Audit-Expert PRO-Invest Consulting, - - , , COMFAR, Project Expert Prime Expert - 1 BI: . URL: http://www.iteam.ru/publications/it/section_92/article_3625/ 2 Best Practices for Building Digital Dashboards from Dundas Data Visualization. URL: http://www.dashboard-insight.com/articles/digital-dashboards/building-dashboards/best-practices-for-building-digital-dashboards.aspx , FOCCAL , . -, : , , . , Business Studio, Betec () -. , : QPR ScoreCard, QPR ProcessGuide, QPR FactView QPR Software Plc, Tuppas KPI Software for Manufacturing Actuate Performancesoft Suite MAUS, . . , . - , -, . - , . , . / . , , ( ) , , , . Project Expert - COMFAR QPR ScoreCard 1. (, , ) 2. , 3. 4. 5. ** , 6. , , 7. * , , , , , . . -, , : - UNIDO 3; , ABC (activity-based costs), 4 ; NPD (New product development). , , , , , . . 5; , BSC (Balanced Scorecard), KPI (Key Performance Indicators), , (, , , ) [7]; - APQC PCF, best practice (APQC). - - , 6; 5M - (Method), (Man), (Machinery), (Material), (. un Milieu ouvrier); PMBOK , , 7; Dashboard ( ) , 8; OLAP (online analytical processing, ) - , . . , , - Microsoft, . , .NET C#, Silverlight 4.0. Dundas: 3 : http:/

cyberleninka.ru

_ 6/2015 ISSN 2410-700_ 3. . . : / . . - , 2008. . 252. ISBN 978-5-370-00985-3 4. . ., . ., . / . . , . . , . , .: 2, .: 2011. 268. 5. . ., / . . , . . , . . . - .: , 2003. 528 : . ( ) ISBN 5-88782-345-3 6. .., / .. , .. , .. , .. . 2001. -304 . ISBN 5-8360-0298-3 7. .., / .. , .. , .. , .. - .: , 2003. 8. ., - . / . , . . [. . . ]. .: - 2011. - 384 .: ISBN 978-5-9693-0184-9 6. .. . / .. // . . .-. . , . - : . , 2012. C. 7276. ISBN -978-5-7964-1578-8 7. . . : . . . / . . , . . , . . . 2- ., - . : , 2012. -144 . ISBN 978-5-7685-9281-2 8. , .. /.., .., .., ..// 'SCM 2010': . . - , , .2, 2010.- .84-87. .. , 2015 519.816+519.876.5 .., . , E-mail: [email protected] , - , . , , . () , : , ; , 65 _ 6/2015 ISSN 2410-700_ , .. (). , . () , , , . . , = (yi, 2, ..., ) = (xi, 2, ... ), T- (.1). x(to), t = to, *, * [1]. 1 - , .. , , = (1, 2,...) , g = ^1, g2, ..., gr) , f=(fl,f2,.,fs). , , : - ; - ; - ( , g, , , ). . , . -, , . , . , . , , . : , . , , 6/2015 ISSN 2410-700 ; ; () . - , , , , . , , , , [2]. , , [3]: - , ; - ; - , , ; - , . () . 2 , [4]: - (); - (); - ( ). 2, , , , . , , , , . 2 - , , , 67 _ 6/2015 ISSN 2410-700_ , , - - . , , [5]. () , , , . [6], , (, , , ). , ( ). . , . , , () , . , , , . , , . , , , . , , , , , , . , , ( ) . , , , . , , , () . , . [7, 8, 9]. , , (-) - - (), [10]. (-) [11] , - [12]. . . . _ 6/2015 ISSN 2410-700_ , [13], . - - , . , ( ), (, - , ). ( ) (, ) . , , , . ( ), (), , . , (, , - .). , , , , , , ( ). , . . , [14,15,16]. , , . - , , , . , , . , , [16]: (); ; . . , . . , , . , , . , , , . , . , , . , [17]. , [18]. , , . . : , _ 6/2015 ISSN 2410-700_ . , . - [19]. , , () . , , . , , . , (, , ), . , - . , . , , , , . , , . , , . : . 3. [16]: - , ; - , ; - , , , , () ; - , ; - , , . : - .. : , , , , , , . . , , - , - , - , - .. - , - . , , - , . - . , . , . : , , . _ 6/2015 ISSN 2410-700_ - , : , , , , . 3 - . . : ; ; .. , ,

cyberleninka.ru

Состояние исследований в области управления скоростью шарошечного бурениия нефтегазовых скважин.

К сожалению, я не могу получ информацию из предоставленного файла. Онако я могу обсудить общие тенденции исследовй в этой области на основе мих знаний.

Современные исследования в области управления скоростью шарошечного бурения нефтазовых скважин ориентированы на повыш эффективности этого процесса. Одним из ключевых направлений иследований является разработка инновационных методов и технологий, направных на оптимизацию скорости бурения и снижение затрат.

Исследованияже фокусируются на разработке новых материалов для буровых инструментов,совершенствование систем управления скоростью бурения и применение автоматизированных систем для оптимизации процесса. Оптимизацияцесса бурения включает в себя точное прогнозирование характеристик грунтовых пород, также разработку методов контроля параметров буренияДругие аспекты исследовани включают разработку устойчивых и экологически чистых методов управления скоростью бурения, которые соответствуют современм требованиям к экологическ безопасности и устойчивому развитию.

Несмотря на значительные достижения в этой области, современ исследования продолжают актив развиваться, стремясь к созданию более эфективных и устойчивых технологий управления скоростью шарошеч бурения нефтегазовых скважин.

%PDF-1.6 % 1135 0 obj <> endobj 1141 0 obj <>/Filter/FlateDecode/ID[<54BB627116A3154A9E0FF0B4DEF28AA8><5BB21A51C537F8449975BABC24C08D89>]/Index[1135 13]/Info 1134 0 R/Length 52/Prev 1224309/Root 1136 0 R/Size 1148/Type/XRef/W[1 2 1]>>stream hbbd``b`N@/`zb}?YY   endstream endobj startxref 0 %%EOF 1147 0 obj <>stream hb```  "  AF ;dy!K"cn FKa=U b1zl``? $jzvSOD}z~1`~`^kS19 DN 3c``h``b& gm```````bC,_o3H >002:yhE MdU3EldT B7!|0wda`peigZ;&@h endstream endobj 1136 0 obj <>/Metadata 77 0 R/Outlines 152 0 R/Pages 1130 0 R/StructTreeRoot 160 0 R/Type/Catalog>> endobj 1137 0 obj <>/MediaBox[0 0 595.32 841.92]/Parent 1131 0 R/Resources<>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]/XObject<>>>/Rotate 0/StructParents 0/Tabs/S/Type/Page>> endobj 1138 0 obj <>stream htRmk0+ R2j/F}^=% P:P@]88]8]p]F#ND~om2xh 2RYf}J. ^_AqU*]MxAy7A7Uus@q8>JXD$TS Jj.q!c$ZX.9p3VuL !tllq KYv^|VyjvO*$,\VZ^LI[1 C{Uy<km8uEFY\ W F^Xx}YoX5NhS\h\a^G>1{ .8 endstream endobj 1139 0 obj <>stream xM @E[>!E n$3p#DWdJ*HAU0^s<##!5G3]  QYb\N6"Mj&SVx0i pr fp3D;^z0;~* endstream endobj 1140 0 obj <>stream JFIFC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222 #u" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?g(( J)h)h)hZJ((m5: (#wGM%:(i( Z)(h(J)h)( Z)(h((()( (((JZ(((JZ((JZ(()(hJZ()(h(()(hJZ(((((JZ(((JZ())h((((((h())hJ(h Z(()(hJZ)(h((((()(h(())h(J(h())h((((OZJ)i)hZJZ()i(((ZJj)(:)i( ))h( ((J( ))hJZ( ))h(ZJZ( (( ((( JZJZ( (Z()i)h()i)h (Z( (()h ( J)h( ( (()h (((( J)h(((()h JZ((Z((JZJZ()h ( ))h ( (()h JZJZ))h( ( ))h ( (()h ( ))h( ( ( ( e> Z())i(Z))i(i(JZJZ)(h ( ZJZ( (Z((((((((((((((((((JZ())hJZ((JZ)(h())hJZ((JZJZ(JZ((((((((())h(JZJZ)(h())hJZ((JZJZ((J)h((JZ((((())h())h))h((()e>)(h(JZ((ZJZJZJZ( Z(JZ(((J(hJ)i(h((JZ())i(h Z(()(h(((((()(((JZ((JZ((JZ(JZ()((((()(((((Z(((((((JZ(JZ()((((((())i(h))h(Z((JZ(((OP Z((()(hJ)hJZ))hJZ(JZ)()(hJZ)(h((((()(hJZ(JZ))h((JZ))h)(h(( ZJZ))h)(hJZ)(h(((((J(hJZ(JZ))hJZ(JZ))h)(hJZ(JZ(JZ))h((Z(JZ(((Z(JZ())hJZ( Z())h(()())h(JZ)(h(()e:ZJZ( ()i)h J)h(Z)((Z)(((((( (JZJZ(((J)h JZ(J( ( ( JZJ)hZ((Z( ))h)h(()h( J(()i)h(ZJZ(((Z( ( J)h)h(( (ZJZ(((J)i)h(JZJZ((JZ(( ))h JZ( JZJZ( ( ( ))h ( (()h )(()i)h(Z(Z(S@ZJ(((()i((m)((((((()i(()hZJ(Z)()i(ZJ((Z))hZ)(ZJ(((((ZJ(ZJ((((((((()h)i(((((ZJ((Z((ZJ(()i((J)h)i((J)h(((ZJZ()i)h JZJ(ZJ)h( J)h)i)h ((((S)i(((((oiPEPEPMQ@ SiQEQEQEQEQEQEQEQEQE-%Q@Q@ IEQEQEQEQEQEQEQEQEQEQEQEQEQEQMPEPEPEPEPEPEPEPEPEPQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEPEPEPEPEPEPEPEPEPE-%-PEPEPEPEQEQK@ EPEPEPE-%R@Q@ EPEPEQE%-RPKEQERPIER@Q@Q@Q@ KEQ@Q@2LQEQEQEQEQEQKI@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@u(QMPEPEPEPEPE6@Q@Q@Q@Q@Q@Q@Q@6EQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEPEPEQEQERPEPKIE-QEQEQE-PEPEQIK@RPQEQK@ EPKE%-%-%-Q@%Q@PE%R@Q@3}%PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPiQ@Q@Q@Q@Q@(ShQM (Mu(QE6E6EuQ@Q@Q@Q@6uu6 (E6u6M(QM u6()((ShSh ( (E6u6uSiQE6Eu6(ShQEQMEuQ@Q@Q@Q@QE-%Q@ IEQKI@-%RQEQ@Q@-Q@

ino.sfu-kras.ru

( ) . , . , , , . , 85% . , . , . .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. , J.F. Brett, S. Salehi, X. Shi, C. Chapman, J. Sugiura . , , . . , , , , . , . , . . , , , , . , , .. , .. , .. , .. , .. , E.. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C. Chapman, J. Sugiura . , . , , .. , .. , .. , .. , .. , .. , .. , A. Isidori, H.K. Khalil, K.S. Narendra . , , , , . , , . , . , 30 . ., 50% , . (), . , , , . , , . , on-line , . . . : 1. . 2. . 3. . 4. . 5. , . . , , , , . : 1. , , , , , . 2. , , , , . 3. , , , , , , . , . . , , . , . . , . , , , . (. ), (. ), (- ()), , . ), ( , , . ), (. ) : , ; , . - - , 09.03.03 21.05.04 . : - - 16.740.11.0622, 1.3.1. (2011 - 2013 .); - -2531.2014.8 (2014 - 2015 .); - - , , , (2013 .) (2014 .); - , (2015 .). 2014/15 ( 1434 10.11.2014 ), (2016 .), (2016 .), (2016 .). (, 2017 .). : 1. , , , . 2. , , . 3. , , . . 30 , 8 , , 7 , Scopus, 11 , . 2 , 2 . . : X - - (, 2012); XLI , , IT + SE43 (, , -, 2013); I International Scientific Conference "Global Science and Innovation" (, , 2013); - : (, 2014); XV - . 2014 (, 2014); XIX - (-, 2015); - - (, 2015); IOP Conference Series: Materials Science and Engineering (Bristol, UK, 2015, 2016); Modern informatization problems: Proceedings of the XXI-th International Open Science Conference (Yelm, USA, 2016); XXI - , (, 2016). . , , , , 149 , 1 . 128 , 28 5 . 1. 1.1 - . - . ( 85%) ( ), . [77, 95, 129], (). .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. [15, 18, 19, 36, 69, 86, 94, 95, 121]. , , . , , . . , , , , , , . ( ), ( ), ( - ) ( ), , , . - : - "Caterpillar", 2011 "Bucyrus", "Terex" "Reedrill"; - "Atlas Copco", , "Ingersoll-Rand"; - "Sandvik", "Driltech"; - "P&H Mining Equipment", "Joy Global". : - -; - , . ; - - ( ), . . 1.1 1.2. 200 30 - 40 380 140 ( P&H Mining Equipment, ). , . 1.1 - -, , , , , , Caterpillar (Bucyrus - Terex - Reec rill) MD 6240 Series 152 - 270 55,5 12,8 - 15,8 222 62,7 MD 6290 Series 152 - 270 52,7 8,6 - 11 277 54,6 MD 6420 Series 229 - 311 74 10,3 - 16,5 382 95,6 MD 6540 Series 229 - 381 85 16,5 - 20 382 131,1 MD 6640 Series 251 - 406 85,3 19,81 627 154 MD 6750 Series 273 - 444 39,6 18,3 733 183,7 Atlas Copco (Ingersoll-Rand) DM25-SP 102 - 178 15,2 12,2 111 28 DM30 127 - 171 45 7,9 13

dissercat.com

1. 121.1 121.2 181.3 201.4 31 37 2. 402.1 402.2 452.3 52 67 3. 693.1 693.2 753.3 843.4 893 3.5 . 96 102 103 . 105 . . 120 . , . , , , . , 85% . , . , . .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. , J.F. Brett, S. Salehi, Shi, C. Chapman, J. Sugiura . , , . . , , , , . , . , . . , , , , . , , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C. Chapman, J. Sugiura . , . , , .. , .. , .. , .. , .. , .. , .. , A. Isidori, H.K. Khalil, K.S. Narendra . , , , , . , , . , . , 30 . ., 50% , . (), . , , , . , , . , on-line , . . . :1. .2. . . . , . . , , , , . :1. , , , , , .2. , , , , .3. , , , , , , . , . . , , . , . . , . , , , . (. ), (. ), (- ()), , . ), ( , , . ), (. ) : , ; , . - - , 09.03.03 21.05.04 . : - 16.740.11.0622, 1.3.1. (2011 2013 .); -2531.2014.8 (2014 2015 .); - , , , (2013 .) (2014 .); , (2015 .). 2014/15 ( 1434 10.11.2014 ), (2016 .), (2016 .), (2016 .). (, 2017 .). :1. , , , . , , . , , . . 30 , 8 , , 7 , Scopus, 11 , . 2 0 , 2 . . : X - (, 2012); XLI , , IT + SE`13 (, , -, 2013);1 International Scientific Conference "Global Science and Innovation" (, , 2013); - : (, 2014); V - . 2014 (, 2014); XIX - (-, 2015); - - (, 2015); IOP Conference Series: Materials Science and Engineering (Bristol, UK, 2015, 2016); Modern informatization problems: Proceedings of the XXI-th International Open Science Conference (Yelm, USA, 2016); XXI - , (, 2016). . , , , , 149 , 1 . 128 , 28 5 . , . , , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C.D. Chapman, J. Sugiura [16, 18, 21, 31, 73, 98, 126, 131, 133, 146]. , (), [143]. ( 1,2, 2, 125, 1,2 .) , , . (CDC, DAT .) , , . , , () [10, 117, 138], . 5-10% , 15-20% [30], 5-7% , 90-100%. , [92, 116]. , , , . ( ) , . , . . . , , . . - , , , - . - , , [89]. 1.3 - . ( 1.3): U(t); , (t); Z(t), Y(t) (), . , , . [61, 89]. , , ., - , . . . . , , , . [23, 82, 83, 119]. . : 1 2 3 4 5 6 n, . .

dslib.net

Напиши развернуто, деловым языком, но чтобы было непонятно, что писала нейросеть

Инновационные методы управления скоростью вращения шарошки при бур нефтегазовых скважин являются приоритетны направлением современных иседований в этой области. Оптимиз процесса бурения зависит от мнества параметров, и разработка автонных систем бурения становится всё более актуальной.

Научно-исследовательскаяа в данной области сфокусирована на создании предиктивных оптимизационных моделей автономных буровых систем. Д оценки оптимизированной рабочейцедуры проведено сравнительное исследование параметров бурения, таких как вес долото, вращения в минуту механическая энергия бурения и продоль сила.

Подход основан на аналие данных с применением методов машинного обучения для нахождения оптимальных параметров топдрайва и системы подачи. Полученные результаты позволяют сделать вывод о потенциале современных технологий улучшения производительности буых операций и уменьшения воздействия на окружающую среду.

a;}n]U= DnbDwv%-!~XGrGn#uzG =ZM737Ac7 di.J-]6s'i[4R}G ~rI]>X+}~AW]>%[PY<;kvsIqLI[<qO;OasF8hOqU:c|+>(^'puk]x}f_ON)c|^N;AJ4Flc@`o^I##lOFK6I.ZIxJ9 5x)y$:Y1g L+LMQsNO2h_[#Y;+Ac0 O V,xJVMGjBv[p,J|& Q{g2R]jEs^W2/{fNm/o`=KbdIHy}`_d+|9>j[vLH' x+;{p E}f0,8.]S.!{,) 3VGclhf]fGc3]f,3O\b\[i|?l.y+l8e <A\7xpkcN=8&rI;eq2R-nA30wzM)7y$8xO<^aGG1;hw)U&W*?[e3;vq$MalOSBC{yT2]n#}/#W>I#RW2pu7kgEt545qh s dVe% Nl~@S`]I3VKRH2b>wC2ObMwbz-N*+">#mifku&opOx{@ \Jl/vwb6j1gGn}7<#}vJPi# SXS0$ g_: d5iVF5*2@N"7 h'8Q}p Z~0'-i.v]VnQ.Hp=HZ| AZtL q.][iF4 $Div(?SpN>[-:%9=j7`tq^Hxvl<?0`gBi96kq$-0[;w<{-yJVlIzOPNh~v-D\|~~p%vJGILvb'wqV4G~ qU C<4)Vl 9;,];Q#|N0X/trNfHD{*|E~\ -KO_>:3OeKB:g2 /!5d1+7`8bu)Ez |F~6AA*]cnA=\C bRB |$URaM%/t/1j 4j-d;m[t+aRFf[1*[jaY-"rx 5(t8 bkc#g]tdvz}s9w?y+bno-7^&y3 S:0b^>E%H}dQXq );Sm!&Ub'!}Y~mDzLFlQ{8m8%)n1G{JvP-|svLObqDo;lG<B~CSpZTA \QHi;Nz)+,R<bpt-jy)Y4Tc'fC(6 \ jHv)i>;VBbnecIWcA1N_;u2,^'@5-i{P{FIXJA;w}i,Ek16*o<w[|O ;vqzCyEi9O ~9NLy:qzR3oF9G 9xLk=  U(^v?cV %u:bkhkwqS&c;=LJ2%)GhR}ccVy;6I =lSa-lOH:1+DV9^p4#cPG.rNI^(E=yv46Ie!VWw~!vL'^!fl9lR+NHf 02b4m(W8dJyV+QEY0$ kgd;Rw)Al3IJ!-s*bjVO j O;Cf'N_nGm8Z$D.i8|]I}QHO3sVbiV #gY1q\1z8L{ P|KR0bF!EL6:]I0)q>F!3&Zr+[;xlPRV<fAR^=>3`Ulew QV{M<Yg{l^,H@[f2ga?a>g2H& [.qsFMDg9.*&oG:(q;o^ UvPkOlUfM5h:]y,Xf~`h-,iw_R0Amm@4U)>d[$XH*) 6?OTcF'z7 Zb+'h78_k'Q<<8Oh\Qk1z2 kXBF}4AlBG}>Gc,X<"$Yqd'PH SE6ls[+KJ[lK{QcJzn;_%U]|x|8&G*Z|z*qMF3|} .:M)fpMd/Lfv]GnXlv6s4"VF*V|4sMk25u&G,f:ou"e9kFd.}> \NrVR7 LU`5U:\OT\{;cPfTC^ZEI^pjqCK@#v*o' X_B%iL@Hk6\L'3w_yN.HVz3b$@".Sa'htnp9oz ~'>\K,2lQ7iC-E >jo.R~9b _c,4?*gVX42=v'pV\1<l,OKYmym6,A'k3p>vsc0oX_~svsqc;q|].)y@sPTJ'D@Cy5k|l 1{5kYSxc&ORs>O0.X*gpQ~5Nkz'=/em[ZL *{ ;[byT4 cT4Pg5(8)*Z<69aY<t]K@}]W+3gW g,VdQ+X\ u?#9p mZ{GTa*Nk<}b95|~NtwY:kv.]~C?o$ o_esr$s$YK$a5k_?b3eW#,Pb|vF3Qs 7 >w >sNZJ}^Ie k97=]){ tZe?RvHe)'WrimRZ`| ;5'RBo-=n7iV]aWN%kxZ>9fInjAoMoN3w1=6&+qhvZitOT'c\Nr/LZ^'R/}'gr}SI%+= Uu $`]ob~u c hk]^WmBKA9h{pBGJaPtd> JCzNK;L}r0B*to)4\ZoN!hk!0~'%,)8Q}'VXs#b&xRMai7'RTGyUX)CVHa4}#'evHP}2Fu8?~ - }55:NyW9\#{*3TY)18YWa.;~E !C # 9X7 cD 1E1txEexZ]/ q:F8;!GEaBoed\3Aw.L5K$1' :S_at:g,YWfXVe[Y"WOlg&auB`P`3yFH9h=/Ov|LG&=%%c:h"3[U5VH<k)( ixlE.jaw )z1|s-:8rFzmLQJ\v_Z#61 U82thvu'Cf{avQ.0]1gc*5ZB]PsYOT/tIKNj<+Hfuiff#haA;[{#tYaFvYpx h}}>:/}6o$9e}Mgcmr!y8<9:5 ;9;2Y;VYhZZNm"eQ.Y~n'z)]Krr>PI]eF#;+F1/I-i'aZhmtmg?UK;4mJk)t;fi]4+K]]+.<B>}|gm.Fky%g%cT\/6w)H-fXm-LMb}d"~p+\fb'un^ _$m 9Oz?LsehM'rdT6uJC[n 0""zwqr8)`NN-gMwtOJrLfudulX-s{a`gN]bc0ZJt;G*9:"gAg%4VuZ r++'Vs!{tLK> Rb~ZK_Xjp>?g[ 8K"v*+ ->?#AwbT Gvr 1bg?Fwoo[i4l_=fsEOd`XcnOv";CT1dV  :w9P[38vVB{9Vi+}}h[  7Z4ze`?& (&Qeo_eS"zhoj7CMZA+C_:9+rUgXQAa?alX9`oE  |?&Ix =A]k? ?}A:u{CdY8rQ$h}DWGX1u`  a%' ~~scey;#9q[&W<e:[Dy(t;tp#5?+nh-1sjFqC9YSlez/wL ywLM4m,,6=vkonU;9HHZ? Yyy6'4JMaGHO8g-Rw`ZXT=^F>Awza&_WBsc,SZ 8I|dXtE^Kw_|YrGK/PY,ZZ'p=g&{ uVv{G}t{+'#>+[RMlk*>I8{D7rr]# zS:c 7xwu:ZUSqkpk{ -,IB;>FD9z;`WqH:4U>W;K)QI6CV2Jy,*7qaiI7!i#]C NWmO]t$q#;.i$tOpcaGbI2p!]}nl "k^9y6<I_n;}u._ .tW&[bB_KGRlE{p25}`k4N_34uQ m`k=o[HKj{"#zr$4^3d m^!NL]QI>WB}uEIPOS#m i&r{LM }&^Hop5~Vm=83h&u\zN]~;!Q~Y6="%A#K2}_=k$}]K%Q}tWPSuX'R)IM]QuR;{wLfSd7fC F,DO~tZUMmd2 70vrk0TewCK |Zg RisfYjW20b_#y@N_Nt~(J(3pb.a/`(}!#V&WW{;EmEd63_r",!1<$7zm8 gB kJvzv[S c 'VIOeQL 3I)k (#h0u,m{KR{^:I.KCAl%fyZc8<7"&`IR#aa'5`[JmI=z_8pxE0]E&S5 S8o>AY 31 Wk eKnPh2_odI(W\`I}mDk94{gkJO1/!NF[+{t>w'K}^E

atlantis-press.com

AbstractThe growing global energy demand and strict environmental policies motivate the use of technology and performance improvement techniques in drilling operations. In the traditional drilling method, the effort and time required to optimize drilling depend on the effectiveness of human driller in selecting the optimal set of parameters to improve system performance. Although existing work has identified the significance of upscaling from manual drilling to autonomous drilling system, little has been done to support this transition. In this paper, predictive optimization model is proposed for autonomous drilling systems. To evaluate optimized operating procedure, a comparative study of surface operating parameters using weight on bit (WOB), rotary speed (RPM) versus drilling mechanical specific energy (DMSE), and feed thrust (FET) is presented. The study used a data-driven approach that uses offset drilling data with machine learning model in finding a pair of input operating variables that serves as best tuning parameters for the topdrive and drawwork system. The results illustrate that derived variables (DMSE, FET) gave higher prediction accuracy with correlation coefficient (R2) of 0.985, root mean square error (RMSE) of 7.6 and average absolute percentage error (AAPE) of 34, whilst using the surface operating parameters (WOB, RPM) delivered an R2, RMSE and AAPE of 0.74, 28 and 106, respectively. Although previous researches have predicted ROP using ANN, this research considered the selection of tuning control variables and using it in predicting the system ROP for an autonomous system. The model output offers parameter optimization and adaptative control of autonomous drilling system. Similar content being viewed by others Zhiyuan Yang, Yongsheng Liu, Yuanbiao Hu Amir Shokry, Salaheldin Elkatatny & Abdulazeez Abdulraheem Sirvan Moradi, Ali Aalianvari & Abbas Aghajani Bazzazi IntroductionHydrocarbons are formed on earths subsurface by the decomposition of organic sediments deposited several millions of years ago. Upon increasing burial with depth, it becomes subjected to increasing temperature and pressure forming kerogen which later produces hydrocarbons within the pore spaces of the rock. A rock material is a naturally occurring aggregate of minerals, constituting an important part of earth crust. According to Emery (1966), a rock is defined as a composition of granular material and glue. Formation rock is a heterogeneous and anisotropic material and therefore a complex material to study from the mechanical viewpoint (Alfreds 1983). One of the most used classification of rocks is based on their origin, which classified rocks into three types of igneous, sedimentary, and metamorphic rocks Alfreds (1983). Hydrocarbons are commonly found in sedimentary rocks enclosed within a geologic trap. Drilling a borehole is the only way to harness the hydrocarbon deposited several thousands of feet beneath the subsurface. In oil-well drilling, the process involves creating a borehole achieved by simultaneous rotary action of the topdrive and the application of axial force by the drawwork hoist, wherein the former transmits torque to the drill bit via the drill string, and the latter facilitates drill string longitudinal motion, thereby establishing drill bit normal force commonly referred to as weight on bit (WOB) (Akgun 2002). During the drilling operation, the drill bit cuts the rock material and the resulting drill cuttings are removed from the borehole by the circulation of drilling fluid which is pumped into a well through the rotary hose and drill string; Fig.1 shows the schematic of a topdrive rotary drilling rig.Fig. 1Schematic of a topdrive rotary drilling rig with bottom-hole assembly (BHA) (prljan et al. 2020)There are two main modes of rotary drilling system: manual drilling and autonomous drilling system. The traditional manual mode of drilling system is manned by the driller who controls the rotary action of the top

link.springer.com

Author / Affiliation / Email Article Menu Font Type: Arial Georgia Verdana Open AccessArticle 1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China 2 Jiangsu Drilling Company of Sinopec East China Engineering Company, Qingdao 266580, China 3 Petroleum Engineering Research Institute of Petro China Tarim Oilfield Company, Korla 841000, China * Author to whom correspondence should be addressed. Submission received: 30 June 2022 / Revised: 29 July 2022 / Accepted: 4 August 2022 / Published: 9 August 2022 Abstract: Increasing drilling speed and shortening the well construction period are the goals of the drilling field. The use of downhole speed-up tools has been noted for its advantages such as no additional cost, no change in drilling equipment and no impact on normal drilling operations. However, conventional downhole speed-up tools cannot meet the needs when the drilled formation contains hydrogen sulfide. Then, the technology test on increasing drilling speed by absorption and hydraulic supercharging of drill string in hydrogen sulfide formation was carried out in well Wanweiye1 (WWY1), Anhui Province, China. The results show that: firstly, the speed-up device by absorption and hydraulic supercharging of drill string can be used in the formation containing hydrogen sulfide, and can still perform normal drilling operations with a hydrogen sulfide concentration of 567 ppm; secondly, the speed-up technology by absorption and hydraulic supercharging of drill string has a significant speed-raising effect in the region containing hydrogen sulfide and can raise the speed by 62.5% to 92.05%; thirdly, the speed-up device by absorption and hydraulic supercharging of drill string can meet the needs of high density killing fluid. Once the well WWY1 suffered an overflow, the device did not affect the killing operation when the killing fluid density reached 2.2 g/cm3 and killing time reached 104.8 h. 1. IntroductionWith the increase in the development of oil and gas resources in deep formations, the number of deep and ultra-deep wells in new and old exploration areas is increasing, and the drilling depth is getting deeper and deeper, which makes the problem of slow drilling speed of deep wells become one of the most important problems faced by drillers [1,2]. Although a variety of techniques and methods have been developed to improve drilling speed, such as high-pressure jet drilling, underbalanced drilling, optimized drilling etc, the downhole speed-up tools have still attracted attention because they do not increase excessive additional costs, do not change drilling equipment, and do not affect normal drilling operations. So far, researchers have developed many speed-up tools, mainly including downhole dynamic drilling tools, rotary impact drilling tools, downhole pulsed cavitation jet generators, downhole torsion impact drilling tools etc. [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. These tools have played their positive role, improving drilling speeds. However, they have shown deficiencies and problems in the process of increasing drilling speed in formations containing hydrogen sulfide. In this paper, the speed-up technology by drill strings absorption and hydraulic supercharging is proposed to improve drilling speed in hydrogen sulfide formation, and the experiment is carried out in Well WWY1, the results show that the speed increase effect is obvious. 2. Requirements for Speed-Up Tools in Formations Containing Hydrogen Sulfide(1)The hydrogen sulfide environment requires speed-up tools to be resistant to corrosion. Hydrogen sulfide is dissolved in water to form a weak acid, which can corrode metals and rubber, mainly in the form of electrochemical corrosion, stress corrosion and hydrogen embrittlement. The harm to rubber materials is that it can accelerate its aging and shorten its service life. In summary, the hydrogen sulfide environment requires the use of corrosion-resistant metal

mdpi.com

Более развернуто

На основании проведенных исследований можно сделать вывод, что процессы бения в нефтегазовых скважинах продают совершенствоваться благаря использованию передовых технологий и разработок. Одной из ключевых областей исследованийвляется управление скоростью вращения шарошки при бурении. Оптимизация данного процесса имеет важное значение для увеличения производительности и снижения временных и ресурсных затрат.

Оптимация скорости бурения связана со множеством факторов, таких как тип грунта, диаметр скважины, очка скважины, вес на долото (WOB), скорость вращенияRPM) и тип долота. Нов подход к оптимизации заключается в осуществлении реального временного анализа для оптимизацииационных параметров WOB и RPM во время бурения.

С целью улучшения производительности буровых операций и перехода к автономны системам бурения предлагается использование предиктивныхелей оптимизации. Такие модели могут быть использованы для оценки оптимальных рабочих процедур и сравительного анализа параметров бурения с применением веса на долото, скорости вращения и механическойнергии бурения.

Результаты иследований свидетельствуют о т, что применение таких подходов может значительно повсить эффективность и точность прогнозирования процессов бурения, что имеет важное для развития данной области и повышения эфективности использования ресурсов.

1. IntroductionDrilling systems have been used in various fields, such as mineral exploration, the development of oil and gas resources, underground water development, and geothermal power. As a necessary means of resource exploration, core drilling plays an essential role in resource exploitation and economic development. However, core drilling is characterized by miniaturization, a low degree of automation, low profits, and high labor intensity [1,2]. Most well drilling costs are not product-cost-dependent but time-dependent. Therefore, the main goals of core drilling optimization are to reduce the total time and labor intensity [3,4]. Drilling speed, commonly called the rate of penetration (ROP), becomes a key performance indicator. ROP optimization involves selecting the operational parameters to improve the drilling speed in this case. Rock formation, hole diameter, hole cleaning and hydraulics, weight-on-bit (WOB), rotational speed (RPM), and bit type are the six factors that influence ROP [5]. Instead of choosing a suitable drill bit and drilling fluid type before drilling, a new solution relies on real-time analysis to optimize the operational parameters, WOB and RPM, during drilling. Intelligent and automatic drilling systems suggest operational parameters for drillers by correlating real-time drilling data with vast amounts of historical data stored in a database, or by exerting complete control of all rig equipment with significant decision points. The latter describes the levels of automation that are likely years away from deployment in the field. Developing a drilling system under laboratory conditions will contribute to research on automated drilling and drilling rate optimization in the core drilling field [6,7,8,9,10]. The drilling systems automation technical section of the Society of Petroleum Engineers (DSATS) developed a DSATS drillbotics program. The program is an international competition for universities to design and build a small drilling rig for petroleum and gas automation. However, it is hard to find automation in core drilling.Compared with petroleum and gas drilling, core drilling has the characteristics of small equipment volume, small bore diameter, fast construction time, and low economic benefits; thus, core drilling has a low level of automation. Owing to the poor working environment of core drilling and drilling rig product molding, the drive mode of the core drilling rig is generally a hydraulic or mechanical drive. The hydraulic drill rig has the disadvantages of complicated maintenance, high cost, and poor delay control, but it has the advantages of large WOB and large torque. The electric drive drill has the advantages of simple structure and high control accuracy, but it has the disadvantages of large volume. Wang et al. developed a multiparameter hydraulic submersible hammer test platform to achieve drilling through hydraulic drive [11]. Zhao developed a multifunction hydraulic drilling test platform [12]. In addition, the Commonwealth Scientific and Industrial Research Organisation (CSRIO) transformed a power head drill rig into an intelligent real-time formation identification system, which is equipped with a parameter monitoring console. The system can analyze real-time rig parameters, infer bit status, and identify formation information. The electric drive core drilling system can simulate actual drilling, provide the measurement and recording of various drilling parameters, provide the basis for improving drilling technology, develop drilling equipment, and provide ideas for drilling optimization [13,14]. The key goal of drilling automation at this stage is to develop digital and robust tools to assist drillers in critical phases and, if possible, to automate routine tasks that machines can easily control [15]. IRI and NOV (Houston, TX, USA), Dreco (Edmonton, AB, Canada), Hitec (Sola, Norway), Siemens (Munich, Germany), and others have developed rig systems with AC frequency con

mdpi.com

AbstractThe growing global energy demand and strict environmental policies motivate the use of technology and performance improvement techniques in drilling operations. In the traditional drilling method, the effort and time required to optimize drilling depend on the effectiveness of human driller in selecting the optimal set of parameters to improve system performance. Although existing work has identified the significance of upscaling from manual drilling to autonomous drilling system, little has been done to support this transition. In this paper, predictive optimization model is proposed for autonomous drilling systems. To evaluate optimized operating procedure, a comparative study of surface operating parameters using weight on bit (WOB), rotary speed (RPM) versus drilling mechanical specific energy (DMSE), and feed thrust (FET) is presented. The study used a data-driven approach that uses offset drilling data with machine learning model in finding a pair of input operating variables that serves as best tuning parameters for the topdrive and drawwork system. The results illustrate that derived variables (DMSE, FET) gave higher prediction accuracy with correlation coefficient (R2) of 0.985, root mean square error (RMSE) of 7.6 and average absolute percentage error (AAPE) of 34, whilst using the surface operating parameters (WOB, RPM) delivered an R2, RMSE and AAPE of 0.74, 28 and 106, respectively. Although previous researches have predicted ROP using ANN, this research considered the selection of tuning control variables and using it in predicting the system ROP for an autonomous system. The model output offers parameter optimization and adaptative control of autonomous drilling system. Similar content being viewed by others Zhiyuan Yang, Yongsheng Liu, Yuanbiao Hu Amir Shokry, Salaheldin Elkatatny & Abdulazeez Abdulraheem Ahmed Bani Mustafa, Ahmed K. Abbas, Mamoon Alameen IntroductionHydrocarbons are formed on earths subsurface by the decomposition of organic sediments deposited several millions of years ago. Upon increasing burial with depth, it becomes subjected to increasing temperature and pressure forming kerogen which later produces hydrocarbons within the pore spaces of the rock. A rock material is a naturally occurring aggregate of minerals, constituting an important part of earth crust. According to Emery (1966), a rock is defined as a composition of granular material and glue. Formation rock is a heterogeneous and anisotropic material and therefore a complex material to study from the mechanical viewpoint (Alfreds 1983). One of the most used classification of rocks is based on their origin, which classified rocks into three types of igneous, sedimentary, and metamorphic rocks Alfreds (1983). Hydrocarbons are commonly found in sedimentary rocks enclosed within a geologic trap. Drilling a borehole is the only way to harness the hydrocarbon deposited several thousands of feet beneath the subsurface. In oil-well drilling, the process involves creating a borehole achieved by simultaneous rotary action of the topdrive and the application of axial force by the drawwork hoist, wherein the former transmits torque to the drill bit via the drill string, and the latter facilitates drill string longitudinal motion, thereby establishing drill bit normal force commonly referred to as weight on bit (WOB) (Akgun 2002). During the drilling operation, the drill bit cuts the rock material and the resulting drill cuttings are removed from the borehole by the circulation of drilling fluid which is pumped into a well through the rotary hose and drill string; Fig.1 shows the schematic of a topdrive rotary drilling rig.Fig. 1Schematic of a topdrive rotary drilling rig with bottom-hole assembly (BHA) (prljan et al. 2020)There are two main modes of rotary drilling system: manual drilling and autonomous drilling system. The traditional manual mode of drilling system is manned by the driller who controls the rotary action of the topdri

link.springer.com

1. IntroductionFossil fuels are still at the first place among the most in-demand energy sources, and this despite the technological development in alternative energies. Therefore, drilling oil and gas wells remains the only way to reach hydrocarbon deposits.Various factors to which the drillstring is subjected favor the appearance of unwanted vibrations and oscillations, these vibrations are considered to be a major cause of inefficiency in the drilling process, leading to increased costs and expenses for the completion of the well [1]. These phenomena stress the elements of the drillstring, causing fatigue failure, drill bit wear, premature failure of pipes, and a decrease in the rate of penetration [2].Depending on the behavior of the drillstring under the effect of vibrations, three types of vibrations can be identified: (1) axial, (2) lateral, and (3) torsional. The latter is the most dangerous and the most destructive one [3]. Torsional vibrations generate a phenomenon called stick-slip, in which the angular speed of the bit periodically switches between two cycles: (1) a near-total sticking and (2) a sudden slip with a rotary speed two times greater or more than the surface speed [4].To understand the dynamic behavior of the system under stick-slip vibrations, several mathematical models have been proposed in the literature. The simplest and most widespread models are the lumped-parameter models; to imitate the behavior of drillstring, Lin and Wang [5] introduced an analogy between the behavior of the drillstring and that of a torsional pendulum, the bottom hole assembly (BHA) was regarded as a rigid body and the pipes as a torsional spring. Kyllingstad and Halsey [6] presented a mathematical model for studying torsional oscillations of drillstring, wherein the obtained results showed that the top drive torque increases with rotary speed. Furthermore, Qiu et al. [7] studied the effect of friction uncertainties on the stick-slip response.Lumped-parameter model with multiple degrees of freedom (DOFs) has been an interesting research topic for many researchers; Patil and Teodoriu [8] investigated the effect of weight on bit (WOB), rotary velocity, and drillstring stiffness on the stick-slip severity. Navarro-Lopez et al. [9] conducted a study on the influence of slip motion on the drilling system by developing a more generic lumped-parameter model that takes into account the increase in drillstring length. Silveira and Wiercigroch [10] presented two nonlinear models, the first with one DOF and the second with three DOFs, hence, different friction models were treated and analyzed. Navarro-Lopez [11] evaluated a model with three DOFs, the relationship between the system equilibrium and the existing sliding motion was carefully studied, and thus, a controller strategy was designed in order to keep the rotational speed at a desired value. Lately, Saldivar et al. [12] used a distributed model in which the wave equation was considered to describe the drill pipe model; the same friction model investigated by [11] was then evaluated.Risks caused by vibrations and other factors during drilling operation are considered to be challenging topics for researchers. Evaluating these risks and finding an optimal manner to carry out efficient preventive maintenance actions is problematic that has been subjected to many research works. Recently, Bhandar et al. [13] investigated the failures of two critical components of the drilling system; they used the Bayesian approach to find optimal maintenance intervals.The aim of this paper is to analyze and investigate the relation between the occurrence of the stick-slip phenomenon and the deformations recorded in drill bits in wells located in Algerian oil field. For this purpose, a three-degree-of-freedom model was used to simulate the behavior of the drill string for different parameters of the rotary drilling system. 2. Rotary Drilling SystemDrilling systems are designed to make a link between

mdpi.com

Современное состояние техники и технологии бурения на карьерах

Извините, я не могу предостить информацию о конкретном состояи техники и технологии бурения на карьерах так как у меня нет прямого доступа базам данных или специализированным источникам. Однако современные тенденции в технике и техногии бурения на карьерах вают в себя внедрение автоматизированных и интеллектуальных систем управления процессом бурения. Как показывают некоторые дисертации и исследования, акальность этой темы обусловлена стремлением к оптимизации процессов бурения и улучшю эффективности добычи полезных ископаемых.

Если в необходима более конкретная информ, я рекомендую обратиться кециализированным источникам,им как академические журналы, научные исследания или официальные отчеты компй, занимающихся бурением на карьера.

( ) . , . , , , . , 85% . , . , . .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. , J.F. Brett, S. Salehi, X. Shi, C. Chapman, J. Sugiura . , , . . , , , , . , . , . . , , , , . , , .. , .. , .. , .. , .. , E.. , .. , .. , .. , .. , A.A. , .. M.E. Hossain, J. Thorogood, F. Iversen, C. Chapman, J. Sugiura . , . , , .. , .. , .. , .. , .. , .. , .. , A. Isidori, H.K. Khalil, K.S. Narendra . , , , , . , , . , . , 30 . ., 50% , . (), . , , , . , , . , on-line , . . . : 1. . 2. . 3. . 4. . 5. , . . , , , , . : 1. , , , , , . 2. , , , , . 3. , , , , , , . , . . , , . , . . , . , , , . (. ), (. ), (- ()), , . ), ( , , . ), (. ) : , ; , . - - , 09.03.03 21.05.04 . : - - 16.740.11.0622, 1.3.1. (2011 - 2013 .); - -2531.2014.8 (2014 - 2015 .); - - , , , (2013 .) (2014 .); - , (2015 .). 2014/15 ( 1434 10.11.2014 ), (2016 .), (2016 .), (2016 .). (, 2017 .). : 1. , , , . 2. , , . 3. , , . . 30 , 8 , , 7 , Scopus, 11 , . 2 , 2 . . : X - - (, 2012); XLI , , IT + SE43 (, , -, 2013); I International Scientific Conference "Global Science and Innovation" (, , 2013); - : (, 2014); XV - . 2014 (, 2014); XIX - (-, 2015); - - (, 2015); IOP Conference Series: Materials Science and Engineering (Bristol, UK, 2015, 2016); Modern informatization problems: Proceedings of the XXI-th International Open Science Conference (Yelm, USA, 2016); XXI - , (, 2016). . , , , , 149 , 1 . 128 , 28 5 . 1. 1.1 - . - . ( 85%) ( ), . [77, 95, 129], (). .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , P.M. [15, 18, 19, 36, 69, 86, 94, 95, 121]. , , . , , . . , , , , , , . ( ), ( ), ( - ) ( ), , , . - : - "Caterpillar", 2011 "Bucyrus", "Terex" "Reedrill"; - "Atlas Copco", , "Ingersoll-Rand"; - "Sandvik", "Driltech"; - "P&H Mining Equipment", "Joy Global". : - -; - , . ; - - ( ), . . 1.1 1.2. 200 30 - 40 380 140 ( P&H Mining Equipment, ). , . 1.1 - -, , , , , , Caterpillar (Bucyrus - Terex - Reec rill) MD 6240 Series 152 - 270 55,5 12,8 - 15,8 222 62,7 MD 6290 Series 152 - 270 52,7 8,6 - 11 277 54,6 MD 6420 Series 229 - 311 74 10,3 - 16,5 382 95,6 MD 6540 Series 229 - 381 85 16,5 - 20 382 131,1 MD 6640 Series 251 - 406 85,3 19,81 627 154 MD 6750 Series 273 - 444 39,6 18,3 733 183,7 Atlas Copco (Ingersoll-Rand) DM25-SP 102 - 178 15,2 12,2 111 28 DM30 127 - 171 45 7,9 13

dissercat.com

, . 1. . . . 1.1. . 1.2. . 1.3. . 1.4. . 1.5. . 2. . . 2.1. - . 2.2. . 2.3. . 2.4. . . 3. . , . 3.1. , . 3.2. . 3.3. . 3.4. . 3.5. . . 4. . . 4.1. . 4.2. , . 4.3. . 4.4. . 4.5. . ( ) - . , - 50, - 10-15. , . - , . . : , , , - . , . . 30%. , - . . , - . - . . , . 1. , , . 2. - . . 3. , , , , . . , ; . . , 20 %. , , . : - ; - , , ; - , ; - . : - ; - , ; - ; - . : - ; - . -160, -215,9 -244,5, - . . . , , . , , , , - ; , , . , . . : - "-2001" (. , 2001 .); " " (, 2004 .); (. , 2005 .); - " " (. , 2005 .). . , , , 148 , 9 17 , 83 8 20 . , , 1. , . , , , , , - . 2. , , , . 3. . , , , . , . 4. . , , . , . 5. , . , . , 3 . 6. . , 20 % . , . 7. , . , 8-15 18-35 . 8. . -215,9, -269,9 (/) 2,2 - 2,8 . 4. . 4.1. : [3]; , [70, 71]; [53]. . . - [52]. AJIPOCA - , : [52]; [71, 73]; [68]; [6, 37]; - [74]; [53]; [70, 71]; () [1, 2, 3]. 4.2. , , , , , , . , 3. , , , [69]. , . (. 4.1). , . . 1,5 (. . 4.2). , 8-16,6 %, . - , - , . 1. "". 2. . 3. - . 4. - "". 5. , , . 6. . 7. . 8. , "" . , , 2012 1. .. /.., . , . // . - 2009. - 6.-. 54-56. 2. .., .. // . . . -. .-: - . 1999. - .63-68. 3. .. / . , . // . 2012. - 4. - . 52-56. 4. A.B., A.A. . .: .- 1971.-149 . 5. .. . .: .- 1976. - 120 . 6. .., .. . .: .- 1974- 248 . 7. .., A.M. . JL: .- 1973. - 168 . 8. .., .. . .: .- 1990. - 263 . 9. .., A.M. . -.: . 1983.-286 . 10. . .. . JI.-1990. - 127 . 11. .. //. , 1980. - 2. 12. A.A., .. // .- 1975. 2.- . 11-14. 13. A.A. // . .- 1973. - 60 . 14. . / . . .. . -.: .- 1981.-269 . 15. . / . . .. . -.: .- 1981.-269 . 16. .. . .- 1969. - 9.- . 15-19. 17. .. . -.: .- 1961.-95 . 18. .. . .: ,- 1984. - 17 . 19. .., .., B.C. . .: .-1991.-295 . 20. .., A.M. . .: .- 1983.-286 . 21. .., .., .. . . . .-1975. 3,- 83 . 22. .. . .: .- 1970. - . 113 - 125. 23. . / .. , .. , .. , A.C. . - .- 1969. 8.-5 . 24. - . . ( .. , .. ). .: .- 1982. -. 137-147. 25. .., E.H., A.C. - 26. . .: . , .-1977.-. 158- 160. 27. .., E.H., .. . .: . , .- 1977. - .

dissercat.com

622.23.51 .. , 80 % . . 1960- .. , , . . . . , , . , , 2-5 - . , . 1960- . . 2-200, -250 -250. , - . 1. (Atlas Copco), - (Ingersoll-Rand, -- (Bucyrus-Erie), - (Tamrock-Driltech), (Harnischfeger P&H) . , , . , , , , , , , [1]. 3-200-60 6-200-32 -200-32 -200-40 , , , 12 8 . -250-32 - , -, . -270, --, (, ) , 40 3/. , Atlas Copco. - , . . , . . - 3-200-60, 6-200-32, 3-200/250- 55, -250--32, -190/250-60 -160/200-40 . , , - . - , , , - . , , , 1. 3- 200/250-60 6- 200-32; 5- 200-36 - 250-32 (- 250) - 270 - 160-48 : , 215,8; 244,5 215,8; 244,5 244,5; 269,9 244,5; 269,9 160 , 60 40 32 (48) 32-55 48 , 0-30 0; 15; 30 0; 15; 30 0; 15; 30 0; 15; 30 5 , 12070 8060 8200 11000 8000 (12000) , 1 1 8 12 8000 , , 300 300 300 450 167 , 0,033 0,033 0,017 0,1 0,05 / , -1 2,5 2,5 0,25-2,5 0-2 0-2 , - 6-4,42 6-4,42 4,42 8-13 5,86 , 3/ 0,53 0,42 0,417 (0,53) 0,63 0,42 - , : 386 377 400 1000 420 68 68 60 105 - 250 200 200 300 200 44 44 2x22 2x65 - - , : 12100 10250 9200 12780 11500 5400 4880 5450 6090 5450 17320 13830 15350 19450 1300 -1602 -60 -60 -400 , 62 54 77 136 45 . , , , 30-35 % . , , , . , ( 65-70 %) . , , - , . ( ), . , , (250-270 160-216 ), - 1,5-2 . . , , , , , -, , , . (), () - , () . ( , ), - , . 125...270 : , , , , [2]. , - . . . , . , , . , , - - . , , , , . , . , 10-15 %. [3]. , , . [3]. , , . . , , - , , . 150^190 . 215^250 20-40 % [4]. 150-190 . , 2-5 , . , . , . ( ), ( ) [3]. (), , - 2. -110-2,8 -130-4,0 -160 , 105 125 165 , 0,5 0,5 0,5 , 96 140 280 , -1 27 21 21 , 3/ 2,7 3,4 7,5 , 2,8 4,0 7,0 , 92 112 142 , 22 30 56 . . 66 254 . - 115 . . , . 0,5 . 2-3 , .. , , 1,8-2,4 , . 0,5 [4]. , - . - 100 (125) 125 (160) : -100-35; -10-32 (-100-35); 2-100-32; 3-100-32; -100-30; -125-24; -125-32 -125-52. , BPJ, REDRJLL, TAM-ROCK (SANDVJK) . - . , . - , , -. i , ? . , , . - - . . , . . . 2. 1. .. . 12, 2006, . 20-24. 2. .. . . 12, 2006, . 25-27. 3. .., .. // , 7, 1998, . 24-26. 4. .., .. . - . 2, 2004, . 8286. : -. . , . .

cyberleninka.ru

Современное состояние техники и технологии бурения на нефтегазовых скважинах

Современное состояние техники технологии бурения на нефтегазовых скважинах отражаетенденцию к постоянномувитию и совершенствованию процессов добычи углеводородов. Несмотря на значительные достижения в этой области, существует постоянная потребность в более эффективных и экологически безопасных методах бурения.

Современные тнологии бурения включают в себя использование передовых системивода и управления, инновационных буровых инструментов, а также автоматизированных систем мониторинга и контроля. Эти технологии спосствуют улучшению скорости и качества процессаурения, снижению временных затрат и обеспечению безопасности работников на месте бурения.

Основные тенденции в развитии техни и технологии бурения на нефтегазов скважинах включают разработку умных систем управления, применение инновационных материалов для буровых инструов, внедрение методов геоизического исследования, а также использование технологий беспилотных буровых установ.

Особое внимание уделяется таким аспектам, как точность геологического прогнозирования, оптимизация параметров бурения с учетом геологических условий конкретного местождения, а также разработка интегрированных подходов к контролю и управлению процессом бурения.

Таким образ, современное состояние техники и технологии бурения нафтегазовых скважинах светельствует о постоянном стремлении к инновациям иовершенствованию процессов, направлено на повышение эффекности и безопасности добычи угеводородов.